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ABSTRACT 
 

Precise, reliable and Real-Time financial information is critical for added -value financial 

services after the economic turmoil from which markets are still struggling to recover. Since 

the Web has become the most significant data source, intelligent crawlers based on Semantic 

Technologies have become trailblazers in the search of knowledge combining Natural 

Language Processing and Ontology Engineering techniques. In this paper, we present the 

SONAR extension approach, which will leverage the potential of knowledge representation by 

extracting, managing and turning scarce and disperse financial information into well-classified, 

structured and widely-used XBRL format-oriented knowledge, strongly supported by a proof-

of-concept implementation and a thorough evaluation of the benefits of the approach. 

 

 

1. Introduction 
 

The ability to acquire, communicate and disseminate business information is vital for investor 

and management decision making [1]. Investors increasingly access basic financial information, 

such as annual and interim reports, and obtain timely information such as press releases, 

analysts’ webcasts and daily stock quotes, from corporate web sites and other public 

information sources [2]. In this scenario, the online reporting of corporate events and actions 

in the websites of stock exchanges and other information intermediaries is becoming crucial 

for traders and managers around the globe [3]. Thus, according to Debreceny and Rahman [4], 

in comparison with quarterly reporting, this form of disclosure is considered to be more 

accurate for reporting price-sensitive information. Taking into account that the Internet 

underlying technologies have the power to revolutionize external reporting [5], a new practice 

has been born. This practice, known as Internet Financial Reporting can be defined as the 



distribution of corporate financial and performance information using Internet technologies 

such as the World Wide Web [6]. 

In the case of corporate sites, many relevant and recent works highlight their importance for 

corporate governance (E.g. [7-8]). According to [9], a corporate web site is essential for 

companies wishing to establish and maintain an international profile or access international 

sources of capital. 

Debreceny, Gray and Rahman [10] state that the majority of International Financial Reporting 

(IFR) practices are voluntary and, mostly, unregulated. Many companies choose to voluntarily 

disseminate information on their corporate websites, although the extent of IFR varies 

significantly across firms ([6,10,11]). Due to the lack of standard format for communicating 

accounting information, organizations had to assemble it manually from often-incompatible 

information systems to prepare financial reports [12]. 

One recent IFR development is XBRL (eXtensible Business Reporting Language), which is an 

XML-based specification for efficient automated retrieval of financial information [13]. For 

example, corporate disclosures that are marked-up with semantic XBRL tags allow users to 

quickly and seamlessly extract and compare information across companies [14]. Currently, 

XBRL is being promoted by the consortium XBRL International, which groups around 450 

companies and organizations committed to extending the use of a standard taxonomy globally 

. XBRL reduces the costs associated with obtaining and analyzing information from businesses 

by addressing and eliminating incompatible reporting formats [15]. Moreover, using XBRL 

helps nonprofessional financial statement users acquire and integrate related financial 

statement and footnote information when making investment decisions [16]. The adoption 

and use of XBRL is expected to help avoid the extra effort and complications associated with 

multiple reconciliations between reporting formats [17]. 

However, XBRL adoption is still a challenge [18] and companies around the globe provide 

information using textual data that investors must analyze using manual methods. This fact is 

backed up by the works of Premuroso and Bhattacharya [19]. According to them, the current 

stage of development of XBRL also offers researchers significant opportunities as XBRL 

International grows in size, relevance and more firms globally start to report their financial 

results in the XBRL format. 

This paper, following the path described in [17,19], targets the building and testing of SONAR 

in a new environment. This initiative consist of a platform designed for information gathering 

using public sources and its transformation into XBRL format by means of the use of natural 

language processing and semantics. 

The remainder of this paper is organized as follows. Section 2 contains the literature review. 

Section 3 discusses the main features of the approach, SONAR, the solution designed to extract 

information from public sources and convert it into XBRL format. Section 4 presents the 

evaluation of SONAR, and Section 5 presents the conclusion, limitations and areas for future 

research. 



2. Background 
In this section, authors briefly review two different research fields that integrate the SONAR 

approach: on the one hand, ontologies for knowledge representation in the Semantic Web, 

and, on the other hand, human-computer interaction in the Semantic Web. 

2.1. Ontologies for Knowledge Representation in the Semantic Web 

The information contained in Web pages was originally designed to be human-readable. As the 

Web grows in both size and complexity, there is an increasing need for automating some of 

the time consuming tasks related to Web content processing and management. In 2001, Tim 

Berners-Lee and his colleagues defined the Semantic Web as an extension of the current Web, 

in which information is given well-defined meaning, better enabling computers and people to 

work in cooperation [20]. The Semantic Web vision is based on the idea of explicitly providing 

the knowledge behind each Web resource in a manner that is machine processable. Ontologies 

[21] constitute the standard knowledge representation mechanism for the Semantic Web. 

During the last few years, a number of approaches have appeared with the purpose of 

structuring non-structured and semi-structured data sources. In particular, some approaches 

try to automatically associate data and semantic notes with HTML documents [22]. Other 

approaches focus on giving structure to semi-structured documents [23]. There are also 

approaches that attempt to automatically create an ontology from unstructured HTML 

documents [24]. 

Ontologies can be used to structure information. The formal semantics underlying ontology 

languages enables the automatic processing of the information in ontologies and allows the 

use of semantic reasoners to infer new knowledge. In this work, an ontology is seen as “a 

formal and explicit specification of a shared conceptualisation” [21]. Ontologies provide a 

formal, structured knowledge representation, with the advantage of being reusable and 

shareable. They also provide a common vocabulary for a domain and define, with different 

levels of formality, the meaning of the terms and the relations between them. Knowledge in 

ontologies is mainly formalized using five kinds of components: classes, relations, functions, 

axioms and instances [25]. Classes in the ontology are usually organized into taxonomies. 

Sometimes the definition of ontologies has been diluted, in the sense that taxonomies are 

considered to be full ontologies [21]. In this work, the Ontology Web Language (OWL), which is 

the de facto Semantic Web standard language, has been used to represent the knowledge 

extracted from texts. 

Creating and populating ontologies manually is a very time-consuming and labor-intensive 

task. Several methodologies have been designed in order to assist in building ontologies [26-

28]. However, in order to overcome the bottleneck created by manually constructing 

ontologies [29], several (semi-)automatic approaches are being researched. In this regard, it is 

necessary to differentiate between Ontology Learning [30] and Ontology Population [31]. 

Ontology Learning is about acquiring new knowledge in the form of concepts and relations to 

be added to an ontological model. As a consequence of this process, the inner structure of the 

ontology is modified. The goal of Ontology Population, on the other hand, is to extract and 

classify instances of the concepts and relations defined in an ontology from a particular data 

source. The process of Ontology Population does not change the structure of an ontology; 

what changes is the instances of concepts and relations in the domain. Instantiating ontologies 



with new knowledge is a relevant step towards the provision of valuable ontology-based 

knowledge services. 

We can distinguish two types of ontology population: (i) ontology population from free text, 

and (ii) ontology population from semi-structured documents such as XML, HTML, etc. In this 

work, a semiautomatic method for ontology population from semi-structured texts has been 

developed. Most of the information available on the Web is provided in terms of semi-

structured or unstructured HTML documents. Wrapping information from HTML tables has 

received much attention in last few years [32]. This information is usually represented by 

means of databases [33] or is transformed into semantic annotations [10]. There are different 

approaches for populating ontologies from semi-structured or unstructured HTML documents. 

For example, in the work presented in [23] an ontology is populated using RDF triples obtained 

from HTML tables. Here, HTML documents are obtained from a Web Crawler and HTML tables 

are processed using wrappers based on predefined patterns. The Levenshtein distance [34] is 

used to identify which properties of the table are equivalent to the properties of concepts in 

the ontology, so they do not use any semantic information. 

2.2. Human-Computer Interaction in the Semantic Web 

In recent years, the utilization of natural language interfaces (NLIs) and controlled natural 

languages (CNLs) towards an effective human-computer interaction has received much 

attention in the context of the Semantic Web. Several platforms have been developed to 

function as either natural language ontology editors or natural language query systems. Two 

good examples in the first category are CNL Editor [35] (formerly OntoPath [36]) and GINO 

[37]. OntoPath is in fact situated in the frontier between these two categories because it 

manages and creates RDF ontologies, and it is also capable of defining queries from natural 

language sentences. It is composed of three main components in a layered architecture: 

“OntoPath-Syntax” in the syntax layer, “OntoPath-Object” in the object layer, and“OntoPath-

Semantic” in the semantic layer. In the upper layer, a knowledge engineer and a domain 

expert can work together to define the domain ontology by using “OntoPath-Semantic”. Using 

this tool, it is possible to build a new ontology or edit a previously existing one. After defining a 

set of concepts and their corresponding relationships, the system returns the ontology in an 

RDF file. In the next layer, “OntoPath-Object” assists domain experts, who have no knowledge 

of ontologies, in graphically expressing natural language descriptions by using nodes and arcs 

that correspond to the elements in the ontology. This graphical description is then stored as 

RDF triples. Finally, in the lower layer, “OntoPath-Syntax” guides users in the query generation 

process through a simple, visual interface. The query is formed from the knowledge available 

in an ontology and is translated into RDF. 

The ontology-based CNL editor extends OntoPath to providing a context-free grammar with 

lexical dependency for defining grammars. Using defined grammars, the CNL editor enables 

the system to get structured data from the writer narratives with sophisticated, pattern-aware 

and informal expressions. Stemming from there, the editor provides guidance on the proper 

choice of words and translates the results into RDF triples. The architecture of the CNL editor 

consists of five components, namely: an interface, through which the system recommends 

proper next words to the writer; a parser, which processes an incoming sentence and 

determines the dependencies; a predictor, which examines the relations in the domain 



ontology to make a recommendation; a lexicon pool, which sends the candidate’s next words 

to the interface; and a triple generator, which generates RDF triples when the sentence is 

completed. 

GINO (Guided Input Natural Language Ontology Editor) allows users to edit and query any OWL 

knowledge base using a guided input natural language akin to English. The user inputs a query 

or sentence into a free form text field and, based on the grammar, the system incremental 

parser offers the possible completions of the user entry by presenting the user with choice 

pop-up boxes. These pop-up menus offer suggestions on how to complete a current word or 

what the next word might be. The GINO architecture consists of four parts: a grammar 

compiler, which generates the necessary dynamic grammar rules to extend the static part of 

the grammar; a partially dynamically generated multi-level grammar, which is used to specify 

the complete set of parser-wise questions/sentences and to construct the SPARQL statements 

from entered sentences; an incremental parser, which maintains an in-memory structure 

representing all possible parse paths of the currently entered sequence of characters. Finally, 

the system also counts on an ontology access layer, implemented with Jena [38]. 

PANTO [39] and NLP-Reduce [40] are two representative examples in the category of natural 

language query systems. PANTO (Portable nAtural laNguage inTerface to Ontologies) is a 

system that takes ontologies and natural language queries as input, and whose output is a 

series of SPARQL queries. When an ontology is selected as the underlying knowledge base, 

PANTO uses the so-called “Lexicon Builder” to automatically extract entities out of the 

ontology in order to build a lexicon. This lexicon is used to make sense of the words that 

appear in a natural language query. Once the user has entered a natural language query, 

PANTO produces a parse tree which is then translated into SPARQL. NLPReduce, on the other 

hand, is a domain-independent natural language interface for querying Semantic Web 

knowledge bases. Its architecture consists of five parts, namely: an interface, which allows the 

user to enter full natural language queries, sentence fragments or just keywords; a lexicon, 

which is automatically built by extracting all explicit and inferred subject-property object 

triples that exist in the knowledge base; an input query processor, which reduces a query by 

removing stop words and punctuation marks; a SPARQL query generator, which generates 

SPARQL queries from the input text, and an ontology access layer, which uses Jena and the 

Pellet reasoner [41]. 

In [42], other similar approaches are examined and the usefulness of NLIs is analyzed. The 

authors came to the conclusion that “casual end users” strongly prefer querying using full-

sentences rather than keywords or any other means. In [43], several related systems are 

analyzed and the exploitation of NLIs in a range of capabilities (e.g., the authoring of 

knowledge content, the retrieval of information from semantic repositories, and the 

generation of natural language texts from formal ontologies) reviewed. In this report, the idea 

that CNLs could replace conventional Semantic Web ontologies was also explored but finally 

dismissed. 

2.3. Financial Systems and XBRL conversion approaches 

 



In a precise way, a financial system, in finance, is the system that allows the transfer of money 

between savers and borrowers [44]. However, from a computer science standpoint, we can 

consider that a financial system is any kind of information system which is applied to some 

branch of finance. With this consideration we can distinguish several kinds of financial systems 

with very different purposes like decision making [45], financial prediction [46], or financial 

search [47] among others. 

The task of use XBRL and, more concretely, of convert several formats to XBRL and vice versa is 

not a new task, but it can be seen that there are not too much efforts on this branch. One of 

the main aims when the researchers try to find ways to convert from custom formats to XBRL 

and vice versa is interoperability that the systems wants to achieve between them [48,49]. 

Several approaches have been designed like for examples the effort made by Declerck & 

Krieger [50] with their design to translate in this case XBRL to DL (Description Logic) format. 

Other approaches pretend to make a transformation between XBRL to Linked Data [51]. 

3. The SONAR approach: core and extensions 
A large part of the huge volume of financial information that can be found in the World Wide 

Web is not annotated semantically. It can be found in a number of heterogeneous business 

sources and this information is characterized by unstructured content, disparate data models 

and implicit knowledge. For this reason, is important to build systems capable of gathering this 

information together and annotating it with enough accuracy to be used in other systems or 

applications, ideally using standards, such as XBRL. 

Authors propose a set of technologies mixed in a single architecture to create a system 

capable of compiling this financial information, annotating them semantically following some 

financial patterns, and creating XBRL documents with the information obtained that can be 

used in automated environments to use the information stored in it. The main architecture of 

the system is shown in Figure 1: 



 

Figure 1 – Architecture of the system 

In the next sections the main components of the architecture will be described as well as 

the relationships between them. 

3.1. Ontology Population System 

The Ontology Population module [52] is capable of gathering knowledge from semi-

structured and non-structured texts. The ultimate goal of our approach is to populate an 

ontology with all the relevant information identified. The populated ontology will then serve as 

the keystone component for an up-to-date, knowledge-based search engine. The architecture 

of the proposed subsystem is shown in Figure 2. It is composed of three main components: (i) 

a set of selection systems (SIS), (ii) the “Selection and Converter System” (TSiR) module, and 

(iii) the “Massive Population Algorithm” (MPa) module. The input of the system is represented 

at the top of the figure. It consists of a collection of available Web information resources. The 

tool has been designed to support both semi-structured and non-structured texts. The module 

produces a number of ontology instances as outputs that are stored in the repository. The 

storage sub-module is shown at the bottom of the figure. 

In a nutshell, the system works as follows. Semi-structured or non-structured data sources 

available on the Internet are parsed to extract the information that can be gathered from the 

text. Currently, only semi-structured elements from HTML- and RSS-formatted documents are 

supported by the system. However, the platform can be easily extended to support other kinds 

of resources. In particular, both the tables contained in the HTML documents and the texts 

included in RSS documents constitute the semi-structured information used in this system. 

Users are shown the parts of the semi-structured texts identified by the parser. Then, users 



must choose which of the found elements are relevant and have to be stored in the knowledge 

base. Users have to set up two further parameters: (i) a set of substitution or transformation 

rules, which will be used by the TSiR module to transform the information into the appropriate 

format, and, optionally, (ii) the set of ontology concepts that are related to the information 

elements to be gathered from the source semi-structured text. This latter optional parameter 

aims to improve the efficiency and accuracy of the MPa module. Once users have indicated the 

tables from the resources in which they are interested, the TSIR module transforms the tables 

into an internal format in XML. For this purpose, the aforementioned user-defined 

transformation rules are applied. During this process, the position of the information in the 

tables is taken into account to form groups. Each group is represented in the form of tuples 

<attribute,literal>. The XML file produced by the TSiR and the set of ontology concepts 

indicated by the user are the input of the MPa module. With this information, MPa generates 

the correspondences between the data in the semi-structured texts and the concepts in the 

ontology. Finally, the newly discovered ontology instances are stored in the knowledge base. 

In Figure 2, the components of the Ontology Population system are illustrated.  

 

Figure 2 – Architecture of the Ontology Population System 

Selection Information System (SIS) - The ultimate purpose of the proposed architecture is to 
make the ontology population algorithm independent from the data source, thus enabling the 
system to operate in a heterogeneous data space. The key to achieving this goal is to 
transform the information in these sources into a common representation format, which will 
be the input for the ontology population algorithm. The first essential step towards this end is 
to gather the information available in the documents that are being processed. This is precisely 
the aim of the “Selection Information System” (SIS) module. 
At a preliminary stage, users must indicate the URLs of the sites that they want the system to 
analyze. An initial list of sites to process can also be established in the Web application 



configuration file. The way the SIS module works is shown in Figure 3. This component is 
responsible for assisting end-users in selecting the informational items to be analyzed. A SIS is 
necessary for each supported file format. At the current stage of development, the SIS 
subsystems make use of parsers, which focus on the discovery of the tables that are contained 
within the source documents. Up to now, parsers for HTML and PDF documents have been 
developed. Other semi-structured information sources such as RSS could also be easily 
incorporated into this scheme. 

 
Figure 3 – SIS Workflow 

 
In a second step, users are shown the list of tables identified by the parsers. Onwards, users 
must choose what tables to take into account for the next stages of the process. Consequently, 
end-users are the only stakeholders responsible for defining what has to be stored in the 
knowledge base. In Error! Reference source not found., a list of the tables retrieved by the 
system from the input Web page is depicted. By ticking the appropriate checkbox, the user is 
essentially asking the system to further process such table in order to extract the knowledge 
that is contained within it.  

 



Figure 4 – Screenshot of the list of retrieved tables  

 
 
Transform System Internal Representation (TSiR) – The TSiR is one of the key components of 
the architecture. It is responsible for transforming the tables, whatever their source is, into an 
internal representation format. This XML-based representation will be common for all inputs 
and represents a unified format for the following stages of the process. A TSiR is necessary for 
each supported file format.  
Next, the internal representation format is described and the way the system transforms the 
tables recognized by the SIS component into this common format is shown.  

i) System Internal Representation 

This component makes use of a shared data structure for storing the information (in the form 
of tables) retrieved by the SIS modules. This data structure is an XML document whose syntax 
is given by an XML-Schema1. In a later stage, the Massive Population Algorithm (MPa) needs to 
receive a document complying with the referred XML Schema as input. In order to map a table 
into an XML file complying with the XML Schema, a first key step is the identification of the 
ontology classes (from the domain ontology) that are related to the table contents. This 
information, that is stored in the "classGroup" element of the XML file, is defined by the end-
user and will be employed by the MPa module during the instance creation process. Once the 
ontology classes have been set, the system creates a "row" element in the XML file for each 
row within the table. After that, the attributes and their values are included. 
The XML-Schema defined to internally represent the information in tables is shown in Figure 5 
– XML Schema of the internal representation format 

. One of the main advantages of making use of an XML Schema to represent the acceptable 
data structure is the possibility of handling the complying documents with the JAXB library2. 
Fundamentally the goal is to be able to generate a set of Java classes based on the XML-
Schema and managing these classes instead of having to deal with the XML documents as 
such.  

                                                           

1 http://www.w3.org/XML/Schema 
2 https://jaxb.dev.java.net/ 



xml version="1.0" encoding="UTF-8"?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

 <xs:element name="value"> 

  <xs:simpleType> 
   <xs:restriction base="xs:string"/> 

  </xs:simpleType> 

 </xs:element> 
 <xs:element name="abstractRepresentation"> 

  <xs:complexType> 

   <xs:sequence> 
    <xs:element ref="classGroup" maxOccurs="unbounded"/> 

    <xs:element ref="row" maxOccurs="unbounded"/> 

   </xs:sequence> 
  </xs:complexType> 

 </xs:element> 
 <xs:element name="row"> 

  <xs:complexType> 

   <xs:sequence> 

    <xs:element ref="tuple" maxOccurs="unbounded"/> 

   </xs:sequence> 

  </xs:complexType> 
 </xs:element> 

 <xs:element name="tuple"> 

  <xs:complexType> 
   <xs:sequence> 

    <xs:element ref="attribute"/> 

    <xs:element ref="value" maxOccurs="unbounded"/> 
   </xs:sequence> 

  </xs:complexType> 

 </xs:element> 
 <xs:element name="classGroup"> 

  <xs:complexType> 

   <xs:sequence> 
    <xs:element ref="classOntology" maxOccurs="unbounded"/> 

   </xs:sequence> 

  </xs:complexType> 
 </xs:element> 

 <xs:element name="classOntology"> 

  <xs:simpleType> 
   <xs:restriction base="xs:string"/> 

  </xs:simpleType> 

 </xs:element> 
 <xs:element name="attribute"> 

  <xs:simpleType> 

   <xs:restriction base="xs:string"/> 
  </xs:simpleType> 

 </xs:element> 

</xs:schema> 

Figure 5 – XML Schema of the internal representation format 

In this XML Schema, the two main elements are rows ("row" element), and groups of classes 
(“classGroup” element). Each “classGroup” element contains a set of ontology classes in the 
form of “classOntology” elements. A “classOntology” element refers to a class of the domain 
ontology. The “row" element represents a row in the input table. Each “row” is composed of a 
set of tuples (“tuple" element). Each “tuple” is defined by an attribute-value pair.  

ii) From tables to an unified representation model 

The way a table is mapped into an XML file complying with the XML Schema described above is 
depicted in Figure 6 – Mapping between a table and its corresponding XML file 

. In this process, a first key step is the identification of the ontology classes (from the domain 
ontology) that are related to the table contents. This information, that is stored in the 
"classGroup" element of the XML file, is defined by the end-user and will be employed by the 
MPa module during the instance creation process. Once the ontology classes have been set, 
the system creates a "row" element in the XML file for each row within the table. The 
attributes and their values are included next.  



 

 

Figure 6 – Mapping between a table and its corresponding XML file 

 

Each row in an incoming table may result in a number of instances. Prior to creating an 
instance it is necessary to identify the ontology class to which the row under question refers. 
This association is generally carried out by the MPa subsystem. However, when the number of 
classes increases, the efficiency of the MPa drastically decreases. In order to overcome this 
shortcoming, users are asked to provide information about the ontology classes that may be 
involved in the tables by defining groups of classes as shown in Figure 7 – Screenshot of the 
selection of the relevant ontology classes 

. Later, the MPa module will have to determine which group is associated to each row of the 
available tables. 

 



 

Figure 7 – Screenshot of the selection of the relevant ontology classes 

 
Massive Population Algorithm (MPa) – The MPa module is the main component of the 
Ontology Population system. It is in charge of creating ontology instances in accordance with 
the information in the tables and storing them in the knowledge base. The input of this 
component is the XML file generated by the TSiR. In a nutshell, the process that takes place 
within this component is as follows. First, a matching is produced to create the instances and 
decide the ontology classes to which they belong. Second, relations are established between 
the previously created instances. Finally, there is a consistency checking phase in which the 
system can identify contradictions. The ultimate goal of this component is to populate the 
ontology that underlies the knowledge-based decision support system. In the following, we 
provide a detailed description of how the instances are generated.  

i) Matching 

In the matching phase, the instances related to the information obtained are created. For each 
XML row element, one or more instances can be created. A first step for this is to identify the 
group of classes that is the closest to the row under question. An affinity function is used to 
this end. The affinity of a row with a group of classes is the sum of the affinities of the row 
under consideration with each of the classes that belong to such group. Thus, let ‘R’ be the row 
that is being processed and ‘G’ the group of classes to which the row is being compared. The 
affinity between ‘R’ and 'G' is calculated as follows: if we have a group of classes “G” formed 
by “n” classes where i = (1..n), the affinity of a row “R” with G is: 






n

i

iClassRAFFINITYGRAFFINITY

1

* ))(,(),(  

Whereby ‘Class(i)’ (for i=1 to n) represents each of the n ontology classes that belong to the 
group ‘G’. ‘AFFINITY*’ is a function that takes into account the semantic annotations in the 
classes to measure the affinity between one given row and the classes. In Figure 8 – Affinity 
algorithm 

,  The function performance and output is described 



AFFINITY*(R, C) { 

 Number affinity = 0; 

 For each tuple “TUPLE<attribute, literal>” of the row “R” { 

  For each of the semantic annotations “L” of the class “C” { 

   If (“L” == “attribute”) then { 

    return ; 

   } 

  }  

  For each semantic annotations of class datatype properties “L”{ 

   affinity = Levenshtein(“L”, “attribute”) + affinity; 

  } 

 } 

 return affinity; 

} 

Figure 8 – Affinity algorithm 

The semantic annotations that the ‘AFFINITY*’ function uses to calculate the closeness 
between a row and a class are defined in the ontology. Each concept (i.e. class of the ontology) 
and each attribute (i.e. datatype property of the ontology) has associated a semantic 
annotation consisting of a set of labels. These labels are used to define different names that 
may be given to the concept or attribute under question. The affinity between a row and a 
class is, thus, defined by the similarity between the attributes of each tuple that belong to the 
row with the labels of the class and its attributes.  

ii) Ontology Population 

Each row of the input XML document can result in zero, one or more instances. Once the 
system has recognized the group of classes that is more closely related to a particular row, the 
instances within the referred row must be created. However, while populating the ontology 
several issues must be taken into account. First, it is necessary to check that no other instance 
in the selected class contains the same information so that no data redundancy is present. 
Second, the relationships between the instances created during this process must be 
discovered. The processes related with (1) creating new instances, (2) avoiding data 
redundancy, and (3) establishing the relations between the instances are described next.  

(1) Instance creation algorithm 

The process of creating a new instance is shown in Figure 9 – Algorithm to create instances of a 
particular class or group of classes 

. The function receives a row ‘R’ and a group of classes ‘G’ as input. Then, an instance is 
created for each ontology class within the group of classes. The datatype properties of the 
instances are set by comparing the labels in them with the attribute-value pairs that constitute 
each tuple in the row.  

 



CREATE_INSTANCES (R,G) {  

 For each Class “C” of G { 

 Instance c = new Instance from Class “C”; 

 Number num = 0; Indicates the number of attributes initialized on c. 

  For each Datatype Property “P” of Class “C” { 

   For each Tuple “TUPLE<attribute, literal>” from Row “R” { 

    If the Class “C” contain the “attribute” { 

     For each label “L” from “attribute” from Class “C” { 

      If (“L” == “literal”) { 

      Add “literal” to “attribute” of Instance “c”; 

      num = num +1; 

      }       

     } 

    } 

   } 

  } 

 } 

 If (num > 0) { 

  Add the Instance to Domain Ontology; 

 } 

} 

Figure 9 – Algorithm to create instances of a particular class or group of classes 

(2) Redundancy 

Data redundancy can become a serious problem. Before a new instance is created, the 
existence of another instance that makes reference to the same concept should be checked. In 
OWL, the ontology language that is used in this work for knowledge representation, there is no 
primary key or anything similar that can uniquely identify each instance in the knowledge base. 
Thus, in order to determine whether two instances in the same class refer to the same 
concept, the values of both datatype and object properties of such instances must be 
considered.  

However, comparing the value of each property for each instance in the knowledge base each 
time a new instance is to be created is far from efficient. To resolve this issue, a constraint is 
imposed on the design of the ontology. All classes, and so the instances that belong to such 
classes, must incorporate a datatype property called “name” containing the unique identifier 
of the instances, simulating the primary key of a database. In this way, if two instances of the 
same class have the same identifier the system can conclude that both instances are 
referencing to the same concept. 

(3) Object Properties 

The object properties are set after all the instances have been created. The system 
distinguishes between two types of relationships: those that occur between instances that 
belong to classes in the same class group, namely, “same class group relations”, and those 
relationships established between instances in different groups, namely, “different class group 
relations”.  

In order to establish the relationships between the instances, the system performs the 
following steps: 

1. First, it identifies the closest class group for each row. 

2. Then, the system creates the corresponding instances as it was explained before. 



3. Third, the system looks for object properties between the classes in the class group 
and establishes the relationships between the previously created instances. 

4. And finally, the system examines the object properties between the classes in different 
class groups and establishes the corresponding relationships. 

3.2. Financial Ontology 

The need to manage financial data has been coming into increasingly sharp focus for some 

time. Years ago, these data sat in silos attached to specific applications in banks and financial 

companies. Then, the Web entered the arena, generating the availability of diverse data sets 

across applications, departments and other financial entities. However, throughout these 

developments, a certain underlying problem has remained unsolved: data reside in thousands 

of incompatible formats and cannot be systematically managed, integrated, unified or 

cleansed. To make matters worse, this incompatibility is not limited to the use of different data 

technologies or to the multiple different “flavours” of each technology (for example, the 

different relational databases in existence), but also because of its incompatibility in terms of 

semantics. Thus, the financial domain is becoming a knowledge intensive domain, with a huge 

number of businesses and companies hinging on it and with a tremendous economic impact 

on our society. Consequently, there is a need for more accurate and powerful strategies for 

financial data management. Heedless of the complexity of the domain, financial companies 

and end-users deem as absolutely necessary a full-fledged integrated approach to cope with 

the ever-increasing volume of information outperforming current approaches such as Yahoo 

Finance. 

Semantic Technologies are currently achieving a certain degree of maturity. They provide a 

consistent and reliable basis to face the aforementioned challenges, aiming at a fine-grained 

approach for organization, manipulation and visualization of the financial data [53]. In the last 

few years, several finances-related ontologies have been developed. The ontology TOVE 

(Toronto Virtual Enterprise) [54], developed by the Enterprise Integration Laboratory from 

Toronto University, describes a standard organization company as their processes. BORO 

(Business Object Reference Ontology) ontology is intended to be suitable as a basis for 

facilitating, among other things, the semantic interoperability of enterprises’ operational 

systems. [55] The consortium DIP (Data Information and Process Integration) developed an 

ontology for the financial domain which was mainly focused on describing semantic web 

services in the stock market domain [56]. The XBRL Ontology Specification Group developed a 

set of ontologies for describing financial and economical data in RDF for sharing and 

interchanging data. This ontology is becoming an open standard means of electronically 

communicating information among businesses, banks, and regulators [57]. 

For the purposes of this use case scenario, we have developed a financial ontology based on 

the ontologies referred to above. The ontology, created from scratch, has been defined in 

OWL. In Table 1, some metrics concerning the financial ontology are presented. 

Table 1. Details of the financial ontology 

Classes 123 

Subclass of properties 86 

Datatype properties 72 



Object properties 16 

Restrictions 87 

 

The ontology covers four main financial concepts (see Figure 10):  

 A financial market is a mechanism that allows people to easily buy and sell financial 
assets such us stocks, commodities, currencies, etc. The main stock markets such as 
Nasdaq, London Stock Exchange or Madrid Stock Exchange have been modeled in the 
ontology as subclasses of Stock Market class. 

 The concept Financial Intermediary represents, among other things, the entities that 
typically invest in the financial markets. Examples of such entities are banks, insurance 
companies, brokers and financial advisers. 

 The Asset class represents everything of value in which an Intermediary can invest, 
such as stock market indexes, commodities, companies, currencies, etc. So, for 
instance, enterprises such as General Electric or Microsoft belong to the Company 
concept and currencies such as the US dollar or Euro are included as individuals of the 
Currency concept. 

 The Legislation concept comprises the entities that are in charge of supervising the 
stock market (e.g. the Federal Reserve or the International Monetary Fund), and the 
regulation and laws that can be applied to the financial domain. 



 
Figure 10. Excerpt of the financial ontology 

3.3. Query System 

The query system will show the user all the information stored by the system through a guided 

query interface. 

For the general public to be able to exploit the advantages of the Semantic Web, it is necessary 

to narrow the gap between the end user and the mathematical-intensive background of the 

Semantic Web. The approach taken by most researchers to bridge this gap is the use of natural 

language interfaces (NLIs) [35, 36, 37]. NLIs aim to provide end-users with a means to access 

knowledge in ontologies hiding the formality of ontologies and query languages. Thus, NLIs 

help users avoid the burden of learning any logic-based language offering end-users a familiar 

and intuitive way of query formulation. However, the realization of NLIs involves several 

issues, one of such problems being linguistic variability and ambiguities. In recent years, 

Controlled Natural Language (CNL) has received much attention due to its ability to reduce 

ambiguity of natural language. 

SONAR uses OWL-Path [58], a CNL-based NLI that assist users in indicating their queries to the 

system. By merging the knowledge in both question and domain ontologies, OWL-Path 



suggests to the user how to complete a query. Once the user has finished formulating the 

natural language query, OWL-Path transforms it into a SPARQL query and issues it to the 

ontology repository. In the end, the results of the query are shown back to the user. 

The global architecture of OWL-Path is depicted in Figure 11. The system is composed of five 

main components: the “Ajax interface”, the “Suggester”, the “Grammar checker”, the “SPARQL 

generator” and, external to the platform but key to the functioning of the system, the 

“Ontology repository”. In a nutshell, the system works as follows. Just as the application is 

started, a set of system ontologies are loaded. Thereafter, users interact with the system 

through the “Ajax interface”. In order to input a query, users must select the desired terms 

they want to put next in the sentence from the list of terms provided by the interface. The list 

of options shown by the “Ajax interface” is generated by the “Suggester” module. In order to 

generate this list of possible terms, the “Suggester” makes use of the “Grammar checker”, 

which, by combining the knowledge in both the question and domain ontologies and taking 

into account the previously inputted terms in the sentence, determines the elements that can 

come next. At last, when the user completes the query and submits it, the “SPARQL generator” 

component transforms the natural language sentence into a SPARQL query and issues it to the 

ontology repository. The results of the query are finally shown back to the user. 

 

Figure 11. OWL-Path architecture. 

Related works (see [10, 35]) use RDF-S ontologies. We use OWL ontologies, which add 

expressivity to RDF-S. Other research has been conducted that uses OWL for guided input such 

as GINO [21]. However, they are mostly based on fixed grammars, while the OWL-Path uses a 

question ontology that permits different ontologies in the ontology repository to be imported 

and includes restrictions allowed in OWL-DL language. 



3.4. XBRL Generator 

XBRL (eXtensible Business Reporting Language) is an open data standard for financial 

reporting. This format allows information modeling and the expression of semantic meaning 

commonly used in business reporting. This standard is based on XML and uses XML syntax and 

related XML technologies such as XML Schema, XLink, Xpath, and namespaces to articulate this 

semantic meaning. 

One of the most important uses of XBRL is to define and exchange financial information, such 

as a financial statement. The XBRL specification is developed and published by XBRL 

International, Inc (XII). 

The objective of this paper is to choose one of the most used taxonomies to generate XBRL 

information about a certain set of companies. In Spain, the National Share Market Commission 

(NSMC) allows the general public to query or download these taxonomies that contain 

information about the financial status of a set of companies. However, this group is limited to 

the companies that belong to the IBEX35 stock market. This limitation can result in the hurdle 

of having to search the information by oneself if certain financial information must be queried, 

what is usually presented in the IPP (Spanish acronym of “Public Periodic Information” 

taxonomy of XBRL  

For this reason, the objective of this module is to generate XBRL information for IPP taxonomy 

[59] of those companies that do not belong to a concrete stock market and hence are not 

generated in an automatic way by the National Share Market Commission. The generation of 

these information files can also be used, for example, to automatically analyze the generated 

data in listed firms [60]. 

The module takes the variables contained in the ontology that should be in the IPP taxonomy 

such as liquid assets, long and short term debts, financial investments, etc. and maps the 

variables that the ontology manages to the XBRL concepts. Automatically, the system reads 

the data from the ontology that is stored in OWL format and generates XBRL data following 

the structure of the taxonomy used (in this case IPP). 

The current system has been developed to support dynamically various types of taxonomies 

depending on the kind of financial information that you wish to export, but nowadays the 

system only supports IPP. That means that in the future it will be possible to add other 

taxonomies and generate configurations to map the existent variables in the ontology of the 

system to the concepts of the new taxonomies. Figure 12 shows the internal behavior or 

architecture of this module: 



 

Figure 12. Architecture of XBRL Module. 

As it can be observed in this figure, there are two main inputs of this module: 

 In the first place, the taxonomy that will be used to generate the XBRL file. As was 

mentioned before, the current taxonomy that is used and is configured to generate 

files is only IPP taxonomy, but the system has the capability of managing several 

taxonomies thanks to the mapper. 

 In second place, the company. The company is necessary in order to access the 

financial information of that concrete company in the ontology. 

The taxonomy is introduced in the system as a code or ID that identifies the ontology in the 

knowledge base of taxonomies. On the other hand, we also introduce a code or ID to identify 

the company for which we will generate the financial information to retrieve the data from the 

ontology. 

The mapper is one of the main parts of this module. This piece is able to map the concepts that 

are stored in the ontology to the concepts that belong to the concrete XBRL taxonomy used. 

The taxonomy knowledge base in fact contains information about the variables that are stored 

in the ontology and how they can be mapped to the current taxonomy. The mapper will obtain 

the data of the company from this knowledge base and from the ontology and send this 

information to the XBRL generator. 

The problem addressed by the mapper solves two basic problems. The first one, related to our 

system is the problem of mapping concepts which comes from a non-standard ontology and 

representation structure to XBRL concepts. The second one allows solving the problem of 

interoperability between heterogeneous systems. This problem can be addressed from several 

points of view like taxonomy alignment [61-62]. However, in our case we propose a method 

based in the use of mapping relations to achieve this problem. 



The mapping process is a three-step task which is part of an iterator process that is executed 

so many times as elements are needed to map. If we have to map for example 50 concepts, 

this process will be executed 50 times and all the steps are obligatory. In this mapping process 

three elements are used: 

 Ontology: Contains the data which the system is going to map to the XBRL financial 

format. 

 Taxonomies: Define the structure of the taxonomy that will be applied to generate the 

XBRL document based on the information stored in the ontology. The current work is 

based on IPP taxonomy but the idea is that the mapper should be able to map further 

taxonomies. 

 Mapping Knowledge Base: The mapping knowledge based forms part of the mapper 

module. It is a knowledge base (in our case is based on a database) which contains 

how the mapping process will be done (through relation definitions). The idea of this 

knowledge base is the definition of a financial concept which comes from the company 

financial information (and for hence from the ontology provided by the ontology 

module) and how this concept should be represented in the selected taxonomy from 

taxonomies module. This is done by establishing a relation between the original 

concepts (from the ontology) and the mapped concepts (from the XBRL concrete 

taxonomy). 

As it was mentioned before, this process is a three-step task. The steps of this mapping process 

are the following (Figure 13 depicts this process with an example): 

1. The first step consists in the reading of all the elements/concepts which are in the 

financial ontology of the company that are going to be mapped. This step can be done 

in two ways depending how the financial concepts are represented. The type of 

representation scheme in the ontology can be established in the own ontology. If it is 

not specified (by a label) the mapper system will try to get the scheme representation 

through an analysis of the ontology which consist in try to get the values associated to 

the concepts through the data properties and if they return a null value assume that 

the data is stored on an instance. If the analysis returns that other scheme was applied 

the mapping process will end returning a negative results. The two schemes of 

representation allowed are: 

a. Instance representation: If they are represented by instances (an instance 

represents the value of a concrete concept on a concrete company) the 

process carried consists in listing the individuals of the ontology. In this 

scheme each concept of the ontology is represented by a class, and the 

instance of each class will contain the value associated to the concept. 

b. Property representation: If the financial concepts are represented as 

properties (datatype), the process consists in, through the instance which 

represents the concrete company; read all the properties associated to 

concepts and their values. 



2. Once the concepts have been loaded in memory by the mapping system (with their 

respective values) the process will load one by one all the concepts loaded and query 

the Mapping Knowledge Base to get if the concept can be mapped. This information 

consists in a particular SQL Query where two parameters are needed: 

a. Concept: The first parameter needed is the concept that the system wants to 

map. 

b. Taxonomy: The second parameter consists in the name/ID of the taxonomy 

which will be applied to generate the XBRL file. If the taxonomy changes, the 

structure of XBRL document can change and the mapping can be different. 

3. Once the Mapping Knowledge Base was queried and assuming that exists a mapping 

element for the concept and the taxonomy provided, the mapper adapts the original 

data structure of the concept to the XBRL data structure of the associated taxonomy.  

One important characteristic of the mapper is that is not only able to make the mapping based 

on the “structuration of the information” from the ontology structure to the XBRL taxonomy 

structure. If for example exists some kind of conversion that should be done (imagine that a 

concrete numerical concept which comes from the ontology needs to be multiplied for a 

constant in the XBRL format) the mapper will do it. To make this possible, the mapper queries 

the Mapping Knowledge Base and asks if the concept, for the selected taxonomy, needs some 

kind of conversion. If the conversion is needed, the mapper will call a concrete 

transformation/adaptation Class/Method through dynamic execution in order to convert the 

concept value to the one specified in the Mapping Knowledge Base. 

 

Figure 13. Mapping process. 

Finally, the XBRL generator is the software component capable of generating XBRL 

information. This part can be seen as a simple XML writer, but, in this case, using the 

specifications of the taxonomy used. 



4. Evaluation 
The subsequent section describes the evaluation of SONAR. This section includes an 

explanation of the research design throughout. Subsequently, the sample is described along 

with results of the test. Finally, a discussion of the results is provided. 

4.1. Research Design 

The evaluation of this research proposal was required in order to determine its level of 

accuracy .The aim of this study is to find out if SONAR provides good results in the construction 

of XBRL files, taking this information from free access resources available in the web. Taking 

this into account, twenty organizations from Spain were selected from the ones that are not 

included in the stock market and which provide relevant and unstructured information to build 

XBRL files. All of them were provided to SONAR and, once the system produced XBRL files, this 

was compared to the output of this process performed in a manual way by four experts (each 

of them completed 5 files describing 5 companies). These comparisons included two different 

tests. On the one hand there is a quantitative test in which Sonar XBRL files and XBRL 

generated by experts item by item are compared. Each XBRL includes 57 items (and 21 more 

calculated from these values that are not taken into account). On the other hand, there is a 

qualitative report for each company in which for every error detected, the expert must explain 

the nature of the error and its possible sources. This qualitative analysis was carried out with 

the help of the qualitative data analysis software NVIVO 2.0 (International QSR Pty Ltd). 

4.2. Sample 

The sample was composed of twenty companies from Spain. None of them are being valued in 

stock markets and none of them were ever in that particular situation. All of them are IT 

companies from all over Spain. Seven of them are from Madrid, four from Catalonia, three 

from Valencia, two from the Basque Country, two from Galicia and two from Andalucía. In 

order to guarantee the availability of economic data, all companies in the sample were 

established before 2006. Data was collected for the 2008 fiscal year in December 2009 and 

analyzed in January 2010. 

With respect to the human sample, four experts were recruited. All of them have a Bachelor’s 

degree in Economics and were pursuing an MBA. The sample was composed of 2 women and 2 

men, with an average age of 27.3. 

4.3. Results and discussion 

QUANTITATIVE STUDY 

The results of the tests, which were carried out on printed copies, were subsequently coded in 

the statistical analysis tool SPSS. According to the sample, a total of 1,140 items must be 

detected and coded in XBRL. Results of the process including data from Experts and SONAR can 

be found in Table 2: 

Table 2. Nominal, Expert and Sonar items identification results 

 Nominal Expert SONAR 

   Found Correct 



Results 1140 1069 1020 947 

 

As can be derived from results in Table 2, the experts can find 93.77 % of the relevant 

information and SONAR 83.07% of this information. To evaluate the accuracy of SONAR, we 

used the standard recall, precision and F1 measures. Recall and precision measures reflect the 

different aspects of annotation performance. These measures were first used to measure an 

Information retrieval system by Cleverdon, Mills and Keen [63]. The F1 measure was later 

introduced by van Rijsbergen [67] in order to combine precision and recall measures, with 

equal importance, into a single parameter for optimization. The use of these measures is not 

new in crawlers testing [68, 69, 70, 71]. 

Precision, Recall and F1 measures are defined as follows: 

Precision = Categories found and correct / Total Categories Found 

Recall = Categories found and correct / Total Categories Correct 

F1 = (2*Precision*Recall) / (Precision + Recall) 

Taking this into account, these measures are as follows for SONAR taking as good data the 

nominal one: 

Precision = 0.9284, Recall = 0.8307, F1 = 0.8769 

On the other hand, if we assume as a standard the data detected by experts, results are as 

follows: 

Precision = 0.9284, Recall = 0.8859, F1 = 0.9067 

A quick look at the results gives the obvious impression that the combined measure is better 

for the second case. Incidentally, experts did not detect 71 pieces of data from XBRL files and 

these data pushed down recall and F1 a bit. In both cases the fraction of retrieved XBRL items 

that are relevant remains unchanged while the fraction of relevant XBRL items that are 

retrieved changes. However, these measures are more than acceptable compared to other 

semantic technologies crawlers (e.g. [68, 72-73]). 

However, a deeper analysis of results brings improved views. Table 3 shows results of the 

expert and SONAR findings in two groups. The first one includes Balance sheet items (36) and 

the second one includes only Income statement items (21). 

Table 3. Nominal, Expert and Sonar Items identification results divided into Balance sheet 

and Income statement items 

 Nominal Expert SONAR 

   Found Correct 

Balance sheet 720 720 720 720 



Income statement 420 349 300 227 

Joint 1140 1069 1020 947 

 

A quick look at results reveals that Balance sheet item identification is perfect both for Experts 

and for SONAR. Hence, Income Statement items identification scores are dramatically 

different. In this scenario, new Precision, Recall and F1 measures taking into account only the 

Income statement items provide these results for SONAR: 

Nominal Data. Precision = 0.7567, Recall 0.5405, F1 = 0.6306 

Experts data. Precision = 0.7567, Recall = 0.6504, F1 = 0.6995 

In order to find out if there are differences among companies in errors detected (122), Figure 

14 shows error frequencies for examined enterprises. An error can be defined as a discrepancy 

between a SONAR generated XBRL item and an expert generated XBRL item. 
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Figure 14. Error frequencies in companies in SONAR. 

Taking into account data provided in Figure 14, we can clearly conclude that 76.22% of the 

total errors found are concentrated in several companies (2, 3, 4, 7, 14, 19 and 20). A first look 

at qualitative results reveals a concentration of errors in some enterprises and in Income 

statement items, but in order to find out the sources of errors an explanation of the qualitative 

must be provided. 

QUALITATIVE STUDY 

The objective of this qualitative study is to find out the main reasons for errors detected in the 

evaluation of SONAR. To do so, after the questionnaires were filled out by experts they were 

coded in NVivo which helps to look for coherent categories of errors. A total of 122 error 



reports were included from sample. Table 4 summarizes the participants descriptions of the 

source of errors. 

Table 4. Descriptions of errors given by participants 

Source # Errors found 

No data. Item description mismatching 48 

No data. Unknown source 21 

Incorrect data. Data corresponding to other item 28 

Incorrect data. Data corresponding to other year 16 

Incorrect data. Unknown source 9 

TOTAL 122 

 

A total of 56.6% of the errors provides no data and the rest provides incorrect data. According 

to the experts’ descriptions, only 24.5% of the errors are unknown. 

The most important category according to its presence is “No data. Item description 

mismatching”. A description of the experts shed light on this particular problem: “Data 

provided in this website has their own particular format and nomenclature that is not easy to 

match with XBRL items”. A possible solution to this mismatching for SONAR is to provide a 

broader and more open description of the concepts in order to let the crawler locate and use 

these items in a proper way. 

The second category in importance is “Incorrect data. Data corresponding to other item”. 

According to experts, many companies publish their financial information using “bizarre” 

formats that can be decoded “only after a very time consuming task”. Thus, a possible solution 

to this can be to expand the capacities of the parser to include improved TSiR features. Lastly, 

the category “Incorrect data. Data corresponding to other year” presents the same problems 

as the previous one, which can be partially improved using same methods. 

Taking into account the results, the performance of SONAR is more than satisfactory. It is a fact 

that perfect XBRL construction must be reached, but creating Balance sheet items in the 

correct way is really a significant result. The lack of precision within the Income statement can 

be, in a sense, a result of an incoherent publication format of the companies. There is also a 

way of improvement for SONAR via a better description of XBRL items and improved TSiR 

features. 

5. Conclusions and Future Work 
 Since the advent of the global economic crisis, the need for accurate, reliable but also ever-

growing financial knowledge has become vital for financial Information Systems with a critical 

impact in markets. In addition, the use of widespread standards of representation of financial 



information, such as XBRL language, has gained momentum and forced traditional analysis, 

design and development of such systems towards its use. 

In this work, we have fundamentally extended and complemented the previous work 

envisaged with regards to the Semantic Financial Search Engine (SONAR), a conceptual 

umbrella for a set of efforts and projects funded by both the EU and the Spanish Government, 

which has proven to be a beneficial: Intelligent Financial Information System based on cutting-

edge technologies such as Semantic Technologies, Natural Language Processing (NLP) and 

Knowledge Representation. The results forthcoming from this follow-up are threefold. First, 

we have relied extensively on data crawlers in order to capture useful information from data 

silos spread all over the Web. Secondly, the role of NLP as an Ontology Population basis 

together with the benefit of logics as an underlying formal system of the software platform has 

been validated through the improvements at the implementation and evaluation viewpoint. 

Finally, the use of the XBRL language has implied a tremendous effort in terms of the 

standardization and interoperability of the SONAR extension regarding potential integration 

with other highly related Financial Information Systems. 

To sum up, our approach has been deemed a significant step forward toward progress in 

Intelligent Financial Information Systems, that is being validated by a number of industrial 

alliances and real-world scenario validation, and which will be complemented by an ambitious 

future work plan. This set up includes the testing of different formalisms which could yield 

more expressivity than the ones underlying our current approach, and also the use of 

Software-as-a-Service (SaaS) and Cloud Computing-based strategies to increase the amount of 

data extracted, managed and stored, peering into large data management systems and data 

intensive techniques.  
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