
Using Data Crawlers and Semantic Web to build Financial XBRL

Data Generators: the SONAR Extension Approach

Miguel Ángel Rodríguez-García

miguelangel.rodriguez@um.es

Department of Informatics and Systems

Universidad de Murcia

Campus de Espinardo, Espinardo, 30100, Murcia, SPAIN

Phone: +34 968888787

Fax: +34 968884151

Alejandro Rodríguez-González

alejandro.rodriguez@upm.es

Bioinformatics at Centre for Plant Biotechnology and Genomics UPM-INIA

Polytechnic University of Madrid

Parque Científico y Tecnológico de la U.P.M.

Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, SPAIN

Phone: +34 91 452 49 00 (Ext. 25550)

Fax: +34 91 715 77 21

Ricardo Colomo-Palacios

ricardo.colomo@uc3m.es

Computer Science Department

Universidad Carlos III de Madrid

Av. Universidad 30, Leganés, 28911, Madrid, SPAIN

Phone: +34 91 624 5958

Fax: +34 91 624 9129

Rafael Valencia-García (Corresponding Author)

valencia@um.es

Department of Informatics and Systems

Universidad de Murcia

Campus de Espinardo, Espinardo, 30100, Murcia, SPAIN

Phone: +34 968888522

Fax: +34 968884151

Juan Miguel Gómez-Berbís

juanmiguel.gomez@uc3m.es

Computer Science Department

Universidad Carlos III de Madrid

Av. Universidad 30, Leganés, 28911, Madrid, SPAIN

mailto:alejandro.rodriguez@upm.es

Phone: +34 91 624 5958

Fax: +34 91 624 9129

Francisco García-Sánchez

francisco.garcia-sanchez@uv.es

Departament d'Informàtica

Escola Tècnica Superior d'Enginyeria

Universitat de València

Av. Vicente Andrés Estellés, s/n

46100 Burjassot, València

Phone: +34 9635 43063

Fax: +34 9635 44768

ABSTRACT

Precise, reliable and Real-Time financial information is critical for added -value financial

services after the economic turmoil from which markets are still struggling to recover. Since

the Web has become the most significant data source, intelligent crawlers based on Semantic

Technologies have become trailblazers in the search of knowledge combining Natural

Language Processing and Ontology Engineering techniques. In this paper, we present the

SONAR extension approach, which will leverage the potential of knowledge representation by

extracting, managing and turning scarce and disperse financial information into well-classified,

structured and widely-used XBRL format-oriented knowledge, strongly supported by a proof-

of-concept implementation and a thorough evaluation of the benefits of the approach.

1. Introduction

The ability to acquire, communicate and disseminate business information is vital for investor

and management decision making [1]. Investors increasingly access basic financial information,

such as annual and interim reports, and obtain timely information such as press releases,

analysts’ webcasts and daily stock quotes, from corporate web sites and other public

information sources [2]. In this scenario, the online reporting of corporate events and actions

in the websites of stock exchanges and other information intermediaries is becoming crucial

for traders and managers around the globe [3]. Thus, according to Debreceny and Rahman [4],

in comparison with quarterly reporting, this form of disclosure is considered to be more

accurate for reporting price-sensitive information. Taking into account that the Internet

underlying technologies have the power to revolutionize external reporting [5], a new practice

has been born. This practice, known as Internet Financial Reporting can be defined as the

distribution of corporate financial and performance information using Internet technologies

such as the World Wide Web [6].

In the case of corporate sites, many relevant and recent works highlight their importance for

corporate governance (E.g. [7-8]). According to [9], a corporate web site is essential for

companies wishing to establish and maintain an international profile or access international

sources of capital.

Debreceny, Gray and Rahman [10] state that the majority of International Financial Reporting

(IFR) practices are voluntary and, mostly, unregulated. Many companies choose to voluntarily

disseminate information on their corporate websites, although the extent of IFR varies

significantly across firms ([6,10,11]). Due to the lack of standard format for communicating

accounting information, organizations had to assemble it manually from often-incompatible

information systems to prepare financial reports [12].

One recent IFR development is XBRL (eXtensible Business Reporting Language), which is an

XML-based specification for efficient automated retrieval of financial information [13]. For

example, corporate disclosures that are marked-up with semantic XBRL tags allow users to

quickly and seamlessly extract and compare information across companies [14]. Currently,

XBRL is being promoted by the consortium XBRL International, which groups around 450

companies and organizations committed to extending the use of a standard taxonomy globally

. XBRL reduces the costs associated with obtaining and analyzing information from businesses

by addressing and eliminating incompatible reporting formats [15]. Moreover, using XBRL

helps nonprofessional financial statement users acquire and integrate related financial

statement and footnote information when making investment decisions [16]. The adoption

and use of XBRL is expected to help avoid the extra effort and complications associated with

multiple reconciliations between reporting formats [17].

However, XBRL adoption is still a challenge [18] and companies around the globe provide

information using textual data that investors must analyze using manual methods. This fact is

backed up by the works of Premuroso and Bhattacharya [19]. According to them, the current

stage of development of XBRL also offers researchers significant opportunities as XBRL

International grows in size, relevance and more firms globally start to report their financial

results in the XBRL format.

This paper, following the path described in [17,19], targets the building and testing of SONAR

in a new environment. This initiative consist of a platform designed for information gathering

using public sources and its transformation into XBRL format by means of the use of natural

language processing and semantics.

The remainder of this paper is organized as follows. Section 2 contains the literature review.

Section 3 discusses the main features of the approach, SONAR, the solution designed to extract

information from public sources and convert it into XBRL format. Section 4 presents the

evaluation of SONAR, and Section 5 presents the conclusion, limitations and areas for future

research.

2. Background
In this section, authors briefly review two different research fields that integrate the SONAR

approach: on the one hand, ontologies for knowledge representation in the Semantic Web,

and, on the other hand, human-computer interaction in the Semantic Web.

2.1. Ontologies for Knowledge Representation in the Semantic Web

The information contained in Web pages was originally designed to be human-readable. As the

Web grows in both size and complexity, there is an increasing need for automating some of

the time consuming tasks related to Web content processing and management. In 2001, Tim

Berners-Lee and his colleagues defined the Semantic Web as an extension of the current Web,

in which information is given well-defined meaning, better enabling computers and people to

work in cooperation [20]. The Semantic Web vision is based on the idea of explicitly providing

the knowledge behind each Web resource in a manner that is machine processable. Ontologies

[21] constitute the standard knowledge representation mechanism for the Semantic Web.

During the last few years, a number of approaches have appeared with the purpose of

structuring non-structured and semi-structured data sources. In particular, some approaches

try to automatically associate data and semantic notes with HTML documents [22]. Other

approaches focus on giving structure to semi-structured documents [23]. There are also

approaches that attempt to automatically create an ontology from unstructured HTML

documents [24].

Ontologies can be used to structure information. The formal semantics underlying ontology

languages enables the automatic processing of the information in ontologies and allows the

use of semantic reasoners to infer new knowledge. In this work, an ontology is seen as “a

formal and explicit specification of a shared conceptualisation” [21]. Ontologies provide a

formal, structured knowledge representation, with the advantage of being reusable and

shareable. They also provide a common vocabulary for a domain and define, with different

levels of formality, the meaning of the terms and the relations between them. Knowledge in

ontologies is mainly formalized using five kinds of components: classes, relations, functions,

axioms and instances [25]. Classes in the ontology are usually organized into taxonomies.

Sometimes the definition of ontologies has been diluted, in the sense that taxonomies are

considered to be full ontologies [21]. In this work, the Ontology Web Language (OWL), which is

the de facto Semantic Web standard language, has been used to represent the knowledge

extracted from texts.

Creating and populating ontologies manually is a very time-consuming and labor-intensive

task. Several methodologies have been designed in order to assist in building ontologies [26-

28]. However, in order to overcome the bottleneck created by manually constructing

ontologies [29], several (semi-)automatic approaches are being researched. In this regard, it is

necessary to differentiate between Ontology Learning [30] and Ontology Population [31].

Ontology Learning is about acquiring new knowledge in the form of concepts and relations to

be added to an ontological model. As a consequence of this process, the inner structure of the

ontology is modified. The goal of Ontology Population, on the other hand, is to extract and

classify instances of the concepts and relations defined in an ontology from a particular data

source. The process of Ontology Population does not change the structure of an ontology;

what changes is the instances of concepts and relations in the domain. Instantiating ontologies

with new knowledge is a relevant step towards the provision of valuable ontology-based

knowledge services.

We can distinguish two types of ontology population: (i) ontology population from free text,

and (ii) ontology population from semi-structured documents such as XML, HTML, etc. In this

work, a semiautomatic method for ontology population from semi-structured texts has been

developed. Most of the information available on the Web is provided in terms of semi-

structured or unstructured HTML documents. Wrapping information from HTML tables has

received much attention in last few years [32]. This information is usually represented by

means of databases [33] or is transformed into semantic annotations [10]. There are different

approaches for populating ontologies from semi-structured or unstructured HTML documents.

For example, in the work presented in [23] an ontology is populated using RDF triples obtained

from HTML tables. Here, HTML documents are obtained from a Web Crawler and HTML tables

are processed using wrappers based on predefined patterns. The Levenshtein distance [34] is

used to identify which properties of the table are equivalent to the properties of concepts in

the ontology, so they do not use any semantic information.

2.2. Human-Computer Interaction in the Semantic Web

In recent years, the utilization of natural language interfaces (NLIs) and controlled natural

languages (CNLs) towards an effective human-computer interaction has received much

attention in the context of the Semantic Web. Several platforms have been developed to

function as either natural language ontology editors or natural language query systems. Two

good examples in the first category are CNL Editor [35] (formerly OntoPath [36]) and GINO

[37]. OntoPath is in fact situated in the frontier between these two categories because it

manages and creates RDF ontologies, and it is also capable of defining queries from natural

language sentences. It is composed of three main components in a layered architecture:

“OntoPath-Syntax” in the syntax layer, “OntoPath-Object” in the object layer, and“OntoPath-

Semantic” in the semantic layer. In the upper layer, a knowledge engineer and a domain

expert can work together to define the domain ontology by using “OntoPath-Semantic”. Using

this tool, it is possible to build a new ontology or edit a previously existing one. After defining a

set of concepts and their corresponding relationships, the system returns the ontology in an

RDF file. In the next layer, “OntoPath-Object” assists domain experts, who have no knowledge

of ontologies, in graphically expressing natural language descriptions by using nodes and arcs

that correspond to the elements in the ontology. This graphical description is then stored as

RDF triples. Finally, in the lower layer, “OntoPath-Syntax” guides users in the query generation

process through a simple, visual interface. The query is formed from the knowledge available

in an ontology and is translated into RDF.

The ontology-based CNL editor extends OntoPath to providing a context-free grammar with

lexical dependency for defining grammars. Using defined grammars, the CNL editor enables

the system to get structured data from the writer narratives with sophisticated, pattern-aware

and informal expressions. Stemming from there, the editor provides guidance on the proper

choice of words and translates the results into RDF triples. The architecture of the CNL editor

consists of five components, namely: an interface, through which the system recommends

proper next words to the writer; a parser, which processes an incoming sentence and

determines the dependencies; a predictor, which examines the relations in the domain

ontology to make a recommendation; a lexicon pool, which sends the candidate’s next words

to the interface; and a triple generator, which generates RDF triples when the sentence is

completed.

GINO (Guided Input Natural Language Ontology Editor) allows users to edit and query any OWL

knowledge base using a guided input natural language akin to English. The user inputs a query

or sentence into a free form text field and, based on the grammar, the system incremental

parser offers the possible completions of the user entry by presenting the user with choice

pop-up boxes. These pop-up menus offer suggestions on how to complete a current word or

what the next word might be. The GINO architecture consists of four parts: a grammar

compiler, which generates the necessary dynamic grammar rules to extend the static part of

the grammar; a partially dynamically generated multi-level grammar, which is used to specify

the complete set of parser-wise questions/sentences and to construct the SPARQL statements

from entered sentences; an incremental parser, which maintains an in-memory structure

representing all possible parse paths of the currently entered sequence of characters. Finally,

the system also counts on an ontology access layer, implemented with Jena [38].

PANTO [39] and NLP-Reduce [40] are two representative examples in the category of natural

language query systems. PANTO (Portable nAtural laNguage inTerface to Ontologies) is a

system that takes ontologies and natural language queries as input, and whose output is a

series of SPARQL queries. When an ontology is selected as the underlying knowledge base,

PANTO uses the so-called “Lexicon Builder” to automatically extract entities out of the

ontology in order to build a lexicon. This lexicon is used to make sense of the words that

appear in a natural language query. Once the user has entered a natural language query,

PANTO produces a parse tree which is then translated into SPARQL. NLPReduce, on the other

hand, is a domain-independent natural language interface for querying Semantic Web

knowledge bases. Its architecture consists of five parts, namely: an interface, which allows the

user to enter full natural language queries, sentence fragments or just keywords; a lexicon,

which is automatically built by extracting all explicit and inferred subject-property object

triples that exist in the knowledge base; an input query processor, which reduces a query by

removing stop words and punctuation marks; a SPARQL query generator, which generates

SPARQL queries from the input text, and an ontology access layer, which uses Jena and the

Pellet reasoner [41].

In [42], other similar approaches are examined and the usefulness of NLIs is analyzed. The

authors came to the conclusion that “casual end users” strongly prefer querying using full-

sentences rather than keywords or any other means. In [43], several related systems are

analyzed and the exploitation of NLIs in a range of capabilities (e.g., the authoring of

knowledge content, the retrieval of information from semantic repositories, and the

generation of natural language texts from formal ontologies) reviewed. In this report, the idea

that CNLs could replace conventional Semantic Web ontologies was also explored but finally

dismissed.

2.3. Financial Systems and XBRL conversion approaches

In a precise way, a financial system, in finance, is the system that allows the transfer of money

between savers and borrowers [44]. However, from a computer science standpoint, we can

consider that a financial system is any kind of information system which is applied to some

branch of finance. With this consideration we can distinguish several kinds of financial systems

with very different purposes like decision making [45], financial prediction [46], or financial

search [47] among others.

The task of use XBRL and, more concretely, of convert several formats to XBRL and vice versa is

not a new task, but it can be seen that there are not too much efforts on this branch. One of

the main aims when the researchers try to find ways to convert from custom formats to XBRL

and vice versa is interoperability that the systems wants to achieve between them [48,49].

Several approaches have been designed like for examples the effort made by Declerck &

Krieger [50] with their design to translate in this case XBRL to DL (Description Logic) format.

Other approaches pretend to make a transformation between XBRL to Linked Data [51].

3. The SONAR approach: core and extensions
A large part of the huge volume of financial information that can be found in the World Wide

Web is not annotated semantically. It can be found in a number of heterogeneous business

sources and this information is characterized by unstructured content, disparate data models

and implicit knowledge. For this reason, is important to build systems capable of gathering this

information together and annotating it with enough accuracy to be used in other systems or

applications, ideally using standards, such as XBRL.

Authors propose a set of technologies mixed in a single architecture to create a system

capable of compiling this financial information, annotating them semantically following some

financial patterns, and creating XBRL documents with the information obtained that can be

used in automated environments to use the information stored in it. The main architecture of

the system is shown in Figure 1:

Figure 1 – Architecture of the system

In the next sections the main components of the architecture will be described as well as

the relationships between them.

3.1. Ontology Population System

The Ontology Population module [52] is capable of gathering knowledge from semi-

structured and non-structured texts. The ultimate goal of our approach is to populate an

ontology with all the relevant information identified. The populated ontology will then serve as

the keystone component for an up-to-date, knowledge-based search engine. The architecture

of the proposed subsystem is shown in Figure 2. It is composed of three main components: (i)

a set of selection systems (SIS), (ii) the “Selection and Converter System” (TSiR) module, and

(iii) the “Massive Population Algorithm” (MPa) module. The input of the system is represented

at the top of the figure. It consists of a collection of available Web information resources. The

tool has been designed to support both semi-structured and non-structured texts. The module

produces a number of ontology instances as outputs that are stored in the repository. The

storage sub-module is shown at the bottom of the figure.

In a nutshell, the system works as follows. Semi-structured or non-structured data sources

available on the Internet are parsed to extract the information that can be gathered from the

text. Currently, only semi-structured elements from HTML- and RSS-formatted documents are

supported by the system. However, the platform can be easily extended to support other kinds

of resources. In particular, both the tables contained in the HTML documents and the texts

included in RSS documents constitute the semi-structured information used in this system.

Users are shown the parts of the semi-structured texts identified by the parser. Then, users

must choose which of the found elements are relevant and have to be stored in the knowledge

base. Users have to set up two further parameters: (i) a set of substitution or transformation

rules, which will be used by the TSiR module to transform the information into the appropriate

format, and, optionally, (ii) the set of ontology concepts that are related to the information

elements to be gathered from the source semi-structured text. This latter optional parameter

aims to improve the efficiency and accuracy of the MPa module. Once users have indicated the

tables from the resources in which they are interested, the TSIR module transforms the tables

into an internal format in XML. For this purpose, the aforementioned user-defined

transformation rules are applied. During this process, the position of the information in the

tables is taken into account to form groups. Each group is represented in the form of tuples

<attribute,literal>. The XML file produced by the TSiR and the set of ontology concepts

indicated by the user are the input of the MPa module. With this information, MPa generates

the correspondences between the data in the semi-structured texts and the concepts in the

ontology. Finally, the newly discovered ontology instances are stored in the knowledge base.

In Figure 2, the components of the Ontology Population system are illustrated.

Figure 2 – Architecture of the Ontology Population System

Selection Information System (SIS) - The ultimate purpose of the proposed architecture is to
make the ontology population algorithm independent from the data source, thus enabling the
system to operate in a heterogeneous data space. The key to achieving this goal is to
transform the information in these sources into a common representation format, which will
be the input for the ontology population algorithm. The first essential step towards this end is
to gather the information available in the documents that are being processed. This is precisely
the aim of the “Selection Information System” (SIS) module.
At a preliminary stage, users must indicate the URLs of the sites that they want the system to
analyze. An initial list of sites to process can also be established in the Web application

configuration file. The way the SIS module works is shown in Figure 3. This component is
responsible for assisting end-users in selecting the informational items to be analyzed. A SIS is
necessary for each supported file format. At the current stage of development, the SIS
subsystems make use of parsers, which focus on the discovery of the tables that are contained
within the source documents. Up to now, parsers for HTML and PDF documents have been
developed. Other semi-structured information sources such as RSS could also be easily
incorporated into this scheme.

Figure 3 – SIS Workflow

In a second step, users are shown the list of tables identified by the parsers. Onwards, users
must choose what tables to take into account for the next stages of the process. Consequently,
end-users are the only stakeholders responsible for defining what has to be stored in the
knowledge base. In Error! Reference source not found., a list of the tables retrieved by the
system from the input Web page is depicted. By ticking the appropriate checkbox, the user is
essentially asking the system to further process such table in order to extract the knowledge
that is contained within it.

Figure 4 – Screenshot of the list of retrieved tables

Transform System Internal Representation (TSiR) – The TSiR is one of the key components of
the architecture. It is responsible for transforming the tables, whatever their source is, into an
internal representation format. This XML-based representation will be common for all inputs
and represents a unified format for the following stages of the process. A TSiR is necessary for
each supported file format.
Next, the internal representation format is described and the way the system transforms the
tables recognized by the SIS component into this common format is shown.

i) System Internal Representation

This component makes use of a shared data structure for storing the information (in the form
of tables) retrieved by the SIS modules. This data structure is an XML document whose syntax
is given by an XML-Schema1. In a later stage, the Massive Population Algorithm (MPa) needs to
receive a document complying with the referred XML Schema as input. In order to map a table
into an XML file complying with the XML Schema, a first key step is the identification of the
ontology classes (from the domain ontology) that are related to the table contents. This
information, that is stored in the "classGroup" element of the XML file, is defined by the end-
user and will be employed by the MPa module during the instance creation process. Once the
ontology classes have been set, the system creates a "row" element in the XML file for each
row within the table. After that, the attributes and their values are included.
The XML-Schema defined to internally represent the information in tables is shown in Figure 5
– XML Schema of the internal representation format

. One of the main advantages of making use of an XML Schema to represent the acceptable
data structure is the possibility of handling the complying documents with the JAXB library2.
Fundamentally the goal is to be able to generate a set of Java classes based on the XML-
Schema and managing these classes instead of having to deal with the XML documents as
such.

1 http://www.w3.org/XML/Schema
2 https://jaxb.dev.java.net/

xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="value">

 <xs:simpleType>
 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 </xs:element>
 <xs:element name="abstractRepresentation">

 <xs:complexType>

 <xs:sequence>
 <xs:element ref="classGroup" maxOccurs="unbounded"/>

 <xs:element ref="row" maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>

 </xs:element>
 <xs:element name="row">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="tuple" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>
 </xs:element>

 <xs:element name="tuple">

 <xs:complexType>
 <xs:sequence>

 <xs:element ref="attribute"/>

 <xs:element ref="value" maxOccurs="unbounded"/>
 </xs:sequence>

 </xs:complexType>

 </xs:element>
 <xs:element name="classGroup">

 <xs:complexType>

 <xs:sequence>
 <xs:element ref="classOntology" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>
 </xs:element>

 <xs:element name="classOntology">

 <xs:simpleType>
 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 </xs:element>
 <xs:element name="attribute">

 <xs:simpleType>

 <xs:restriction base="xs:string"/>
 </xs:simpleType>

 </xs:element>

</xs:schema>

Figure 5 – XML Schema of the internal representation format

In this XML Schema, the two main elements are rows ("row" element), and groups of classes
(“classGroup” element). Each “classGroup” element contains a set of ontology classes in the
form of “classOntology” elements. A “classOntology” element refers to a class of the domain
ontology. The “row" element represents a row in the input table. Each “row” is composed of a
set of tuples (“tuple" element). Each “tuple” is defined by an attribute-value pair.

ii) From tables to an unified representation model

The way a table is mapped into an XML file complying with the XML Schema described above is
depicted in Figure 6 – Mapping between a table and its corresponding XML file

. In this process, a first key step is the identification of the ontology classes (from the domain
ontology) that are related to the table contents. This information, that is stored in the
"classGroup" element of the XML file, is defined by the end-user and will be employed by the
MPa module during the instance creation process. Once the ontology classes have been set,
the system creates a "row" element in the XML file for each row within the table. The
attributes and their values are included next.

Figure 6 – Mapping between a table and its corresponding XML file

Each row in an incoming table may result in a number of instances. Prior to creating an
instance it is necessary to identify the ontology class to which the row under question refers.
This association is generally carried out by the MPa subsystem. However, when the number of
classes increases, the efficiency of the MPa drastically decreases. In order to overcome this
shortcoming, users are asked to provide information about the ontology classes that may be
involved in the tables by defining groups of classes as shown in Figure 7 – Screenshot of the
selection of the relevant ontology classes

. Later, the MPa module will have to determine which group is associated to each row of the
available tables.

Figure 7 – Screenshot of the selection of the relevant ontology classes

Massive Population Algorithm (MPa) – The MPa module is the main component of the
Ontology Population system. It is in charge of creating ontology instances in accordance with
the information in the tables and storing them in the knowledge base. The input of this
component is the XML file generated by the TSiR. In a nutshell, the process that takes place
within this component is as follows. First, a matching is produced to create the instances and
decide the ontology classes to which they belong. Second, relations are established between
the previously created instances. Finally, there is a consistency checking phase in which the
system can identify contradictions. The ultimate goal of this component is to populate the
ontology that underlies the knowledge-based decision support system. In the following, we
provide a detailed description of how the instances are generated.

i) Matching

In the matching phase, the instances related to the information obtained are created. For each
XML row element, one or more instances can be created. A first step for this is to identify the
group of classes that is the closest to the row under question. An affinity function is used to
this end. The affinity of a row with a group of classes is the sum of the affinities of the row
under consideration with each of the classes that belong to such group. Thus, let ‘R’ be the row
that is being processed and ‘G’ the group of classes to which the row is being compared. The
affinity between ‘R’ and 'G' is calculated as follows: if we have a group of classes “G” formed
by “n” classes where i = (1..n), the affinity of a row “R” with G is:






n

i

iClassRAFFINITYGRAFFINITY

1

*))(,(),(

Whereby ‘Class(i)’ (for i=1 to n) represents each of the n ontology classes that belong to the
group ‘G’. ‘AFFINITY*’ is a function that takes into account the semantic annotations in the
classes to measure the affinity between one given row and the classes. In Figure 8 – Affinity
algorithm

, The function performance and output is described

AFFINITY*(R, C) {

 Number affinity = 0;

 For each tuple “TUPLE<attribute, literal>” of the row “R” {

 For each of the semantic annotations “L” of the class “C” {

 If (“L” == “attribute”) then {

 return ;

 }

 }

 For each semantic annotations of class datatype properties “L”{

 affinity = Levenshtein(“L”, “attribute”) + affinity;

 }

 }

 return affinity;

}

Figure 8 – Affinity algorithm

The semantic annotations that the ‘AFFINITY*’ function uses to calculate the closeness
between a row and a class are defined in the ontology. Each concept (i.e. class of the ontology)
and each attribute (i.e. datatype property of the ontology) has associated a semantic
annotation consisting of a set of labels. These labels are used to define different names that
may be given to the concept or attribute under question. The affinity between a row and a
class is, thus, defined by the similarity between the attributes of each tuple that belong to the
row with the labels of the class and its attributes.

ii) Ontology Population

Each row of the input XML document can result in zero, one or more instances. Once the
system has recognized the group of classes that is more closely related to a particular row, the
instances within the referred row must be created. However, while populating the ontology
several issues must be taken into account. First, it is necessary to check that no other instance
in the selected class contains the same information so that no data redundancy is present.
Second, the relationships between the instances created during this process must be
discovered. The processes related with (1) creating new instances, (2) avoiding data
redundancy, and (3) establishing the relations between the instances are described next.

(1) Instance creation algorithm

The process of creating a new instance is shown in Figure 9 – Algorithm to create instances of a
particular class or group of classes

. The function receives a row ‘R’ and a group of classes ‘G’ as input. Then, an instance is
created for each ontology class within the group of classes. The datatype properties of the
instances are set by comparing the labels in them with the attribute-value pairs that constitute
each tuple in the row.

CREATE_INSTANCES (R,G) {

 For each Class “C” of G {

 Instance c = new Instance from Class “C”;

 Number num = 0; Indicates the number of attributes initialized on c.

 For each Datatype Property “P” of Class “C” {

 For each Tuple “TUPLE<attribute, literal>” from Row “R” {

 If the Class “C” contain the “attribute” {

 For each label “L” from “attribute” from Class “C” {

 If (“L” == “literal”) {

 Add “literal” to “attribute” of Instance “c”;

 num = num +1;

 }

 }

 }

 }

 }

 }

 If (num > 0) {

 Add the Instance to Domain Ontology;

 }

}

Figure 9 – Algorithm to create instances of a particular class or group of classes

(2) Redundancy

Data redundancy can become a serious problem. Before a new instance is created, the
existence of another instance that makes reference to the same concept should be checked. In
OWL, the ontology language that is used in this work for knowledge representation, there is no
primary key or anything similar that can uniquely identify each instance in the knowledge base.
Thus, in order to determine whether two instances in the same class refer to the same
concept, the values of both datatype and object properties of such instances must be
considered.

However, comparing the value of each property for each instance in the knowledge base each
time a new instance is to be created is far from efficient. To resolve this issue, a constraint is
imposed on the design of the ontology. All classes, and so the instances that belong to such
classes, must incorporate a datatype property called “name” containing the unique identifier
of the instances, simulating the primary key of a database. In this way, if two instances of the
same class have the same identifier the system can conclude that both instances are
referencing to the same concept.

(3) Object Properties

The object properties are set after all the instances have been created. The system
distinguishes between two types of relationships: those that occur between instances that
belong to classes in the same class group, namely, “same class group relations”, and those
relationships established between instances in different groups, namely, “different class group
relations”.

In order to establish the relationships between the instances, the system performs the
following steps:

1. First, it identifies the closest class group for each row.

2. Then, the system creates the corresponding instances as it was explained before.

3. Third, the system looks for object properties between the classes in the class group
and establishes the relationships between the previously created instances.

4. And finally, the system examines the object properties between the classes in different
class groups and establishes the corresponding relationships.

3.2. Financial Ontology

The need to manage financial data has been coming into increasingly sharp focus for some

time. Years ago, these data sat in silos attached to specific applications in banks and financial

companies. Then, the Web entered the arena, generating the availability of diverse data sets

across applications, departments and other financial entities. However, throughout these

developments, a certain underlying problem has remained unsolved: data reside in thousands

of incompatible formats and cannot be systematically managed, integrated, unified or

cleansed. To make matters worse, this incompatibility is not limited to the use of different data

technologies or to the multiple different “flavours” of each technology (for example, the

different relational databases in existence), but also because of its incompatibility in terms of

semantics. Thus, the financial domain is becoming a knowledge intensive domain, with a huge

number of businesses and companies hinging on it and with a tremendous economic impact

on our society. Consequently, there is a need for more accurate and powerful strategies for

financial data management. Heedless of the complexity of the domain, financial companies

and end-users deem as absolutely necessary a full-fledged integrated approach to cope with

the ever-increasing volume of information outperforming current approaches such as Yahoo

Finance.

Semantic Technologies are currently achieving a certain degree of maturity. They provide a

consistent and reliable basis to face the aforementioned challenges, aiming at a fine-grained

approach for organization, manipulation and visualization of the financial data [53]. In the last

few years, several finances-related ontologies have been developed. The ontology TOVE

(Toronto Virtual Enterprise) [54], developed by the Enterprise Integration Laboratory from

Toronto University, describes a standard organization company as their processes. BORO

(Business Object Reference Ontology) ontology is intended to be suitable as a basis for

facilitating, among other things, the semantic interoperability of enterprises’ operational

systems. [55] The consortium DIP (Data Information and Process Integration) developed an

ontology for the financial domain which was mainly focused on describing semantic web

services in the stock market domain [56]. The XBRL Ontology Specification Group developed a

set of ontologies for describing financial and economical data in RDF for sharing and

interchanging data. This ontology is becoming an open standard means of electronically

communicating information among businesses, banks, and regulators [57].

For the purposes of this use case scenario, we have developed a financial ontology based on

the ontologies referred to above. The ontology, created from scratch, has been defined in

OWL. In Table 1, some metrics concerning the financial ontology are presented.

Table 1. Details of the financial ontology

Classes 123

Subclass of properties 86

Datatype properties 72

Object properties 16

Restrictions 87

The ontology covers four main financial concepts (see Figure 10):

 A financial market is a mechanism that allows people to easily buy and sell financial
assets such us stocks, commodities, currencies, etc. The main stock markets such as
Nasdaq, London Stock Exchange or Madrid Stock Exchange have been modeled in the
ontology as subclasses of Stock Market class.

 The concept Financial Intermediary represents, among other things, the entities that
typically invest in the financial markets. Examples of such entities are banks, insurance
companies, brokers and financial advisers.

 The Asset class represents everything of value in which an Intermediary can invest,
such as stock market indexes, commodities, companies, currencies, etc. So, for
instance, enterprises such as General Electric or Microsoft belong to the Company
concept and currencies such as the US dollar or Euro are included as individuals of the
Currency concept.

 The Legislation concept comprises the entities that are in charge of supervising the
stock market (e.g. the Federal Reserve or the International Monetary Fund), and the
regulation and laws that can be applied to the financial domain.

Figure 10. Excerpt of the financial ontology

3.3. Query System

The query system will show the user all the information stored by the system through a guided

query interface.

For the general public to be able to exploit the advantages of the Semantic Web, it is necessary

to narrow the gap between the end user and the mathematical-intensive background of the

Semantic Web. The approach taken by most researchers to bridge this gap is the use of natural

language interfaces (NLIs) [35, 36, 37]. NLIs aim to provide end-users with a means to access

knowledge in ontologies hiding the formality of ontologies and query languages. Thus, NLIs

help users avoid the burden of learning any logic-based language offering end-users a familiar

and intuitive way of query formulation. However, the realization of NLIs involves several

issues, one of such problems being linguistic variability and ambiguities. In recent years,

Controlled Natural Language (CNL) has received much attention due to its ability to reduce

ambiguity of natural language.

SONAR uses OWL-Path [58], a CNL-based NLI that assist users in indicating their queries to the

system. By merging the knowledge in both question and domain ontologies, OWL-Path

suggests to the user how to complete a query. Once the user has finished formulating the

natural language query, OWL-Path transforms it into a SPARQL query and issues it to the

ontology repository. In the end, the results of the query are shown back to the user.

The global architecture of OWL-Path is depicted in Figure 11. The system is composed of five

main components: the “Ajax interface”, the “Suggester”, the “Grammar checker”, the “SPARQL

generator” and, external to the platform but key to the functioning of the system, the

“Ontology repository”. In a nutshell, the system works as follows. Just as the application is

started, a set of system ontologies are loaded. Thereafter, users interact with the system

through the “Ajax interface”. In order to input a query, users must select the desired terms

they want to put next in the sentence from the list of terms provided by the interface. The list

of options shown by the “Ajax interface” is generated by the “Suggester” module. In order to

generate this list of possible terms, the “Suggester” makes use of the “Grammar checker”,

which, by combining the knowledge in both the question and domain ontologies and taking

into account the previously inputted terms in the sentence, determines the elements that can

come next. At last, when the user completes the query and submits it, the “SPARQL generator”

component transforms the natural language sentence into a SPARQL query and issues it to the

ontology repository. The results of the query are finally shown back to the user.

Figure 11. OWL-Path architecture.

Related works (see [10, 35]) use RDF-S ontologies. We use OWL ontologies, which add

expressivity to RDF-S. Other research has been conducted that uses OWL for guided input such

as GINO [21]. However, they are mostly based on fixed grammars, while the OWL-Path uses a

question ontology that permits different ontologies in the ontology repository to be imported

and includes restrictions allowed in OWL-DL language.

3.4. XBRL Generator

XBRL (eXtensible Business Reporting Language) is an open data standard for financial

reporting. This format allows information modeling and the expression of semantic meaning

commonly used in business reporting. This standard is based on XML and uses XML syntax and

related XML technologies such as XML Schema, XLink, Xpath, and namespaces to articulate this

semantic meaning.

One of the most important uses of XBRL is to define and exchange financial information, such

as a financial statement. The XBRL specification is developed and published by XBRL

International, Inc (XII).

The objective of this paper is to choose one of the most used taxonomies to generate XBRL

information about a certain set of companies. In Spain, the National Share Market Commission

(NSMC) allows the general public to query or download these taxonomies that contain

information about the financial status of a set of companies. However, this group is limited to

the companies that belong to the IBEX35 stock market. This limitation can result in the hurdle

of having to search the information by oneself if certain financial information must be queried,

what is usually presented in the IPP (Spanish acronym of “Public Periodic Information”

taxonomy of XBRL

For this reason, the objective of this module is to generate XBRL information for IPP taxonomy

[59] of those companies that do not belong to a concrete stock market and hence are not

generated in an automatic way by the National Share Market Commission. The generation of

these information files can also be used, for example, to automatically analyze the generated

data in listed firms [60].

The module takes the variables contained in the ontology that should be in the IPP taxonomy

such as liquid assets, long and short term debts, financial investments, etc. and maps the

variables that the ontology manages to the XBRL concepts. Automatically, the system reads

the data from the ontology that is stored in OWL format and generates XBRL data following

the structure of the taxonomy used (in this case IPP).

The current system has been developed to support dynamically various types of taxonomies

depending on the kind of financial information that you wish to export, but nowadays the

system only supports IPP. That means that in the future it will be possible to add other

taxonomies and generate configurations to map the existent variables in the ontology of the

system to the concepts of the new taxonomies. Figure 12 shows the internal behavior or

architecture of this module:

Figure 12. Architecture of XBRL Module.

As it can be observed in this figure, there are two main inputs of this module:

 In the first place, the taxonomy that will be used to generate the XBRL file. As was

mentioned before, the current taxonomy that is used and is configured to generate

files is only IPP taxonomy, but the system has the capability of managing several

taxonomies thanks to the mapper.

 In second place, the company. The company is necessary in order to access the

financial information of that concrete company in the ontology.

The taxonomy is introduced in the system as a code or ID that identifies the ontology in the

knowledge base of taxonomies. On the other hand, we also introduce a code or ID to identify

the company for which we will generate the financial information to retrieve the data from the

ontology.

The mapper is one of the main parts of this module. This piece is able to map the concepts that

are stored in the ontology to the concepts that belong to the concrete XBRL taxonomy used.

The taxonomy knowledge base in fact contains information about the variables that are stored

in the ontology and how they can be mapped to the current taxonomy. The mapper will obtain

the data of the company from this knowledge base and from the ontology and send this

information to the XBRL generator.

The problem addressed by the mapper solves two basic problems. The first one, related to our

system is the problem of mapping concepts which comes from a non-standard ontology and

representation structure to XBRL concepts. The second one allows solving the problem of

interoperability between heterogeneous systems. This problem can be addressed from several

points of view like taxonomy alignment [61-62]. However, in our case we propose a method

based in the use of mapping relations to achieve this problem.

The mapping process is a three-step task which is part of an iterator process that is executed

so many times as elements are needed to map. If we have to map for example 50 concepts,

this process will be executed 50 times and all the steps are obligatory. In this mapping process

three elements are used:

 Ontology: Contains the data which the system is going to map to the XBRL financial

format.

 Taxonomies: Define the structure of the taxonomy that will be applied to generate the

XBRL document based on the information stored in the ontology. The current work is

based on IPP taxonomy but the idea is that the mapper should be able to map further

taxonomies.

 Mapping Knowledge Base: The mapping knowledge based forms part of the mapper

module. It is a knowledge base (in our case is based on a database) which contains

how the mapping process will be done (through relation definitions). The idea of this

knowledge base is the definition of a financial concept which comes from the company

financial information (and for hence from the ontology provided by the ontology

module) and how this concept should be represented in the selected taxonomy from

taxonomies module. This is done by establishing a relation between the original

concepts (from the ontology) and the mapped concepts (from the XBRL concrete

taxonomy).

As it was mentioned before, this process is a three-step task. The steps of this mapping process

are the following (Figure 13 depicts this process with an example):

1. The first step consists in the reading of all the elements/concepts which are in the

financial ontology of the company that are going to be mapped. This step can be done

in two ways depending how the financial concepts are represented. The type of

representation scheme in the ontology can be established in the own ontology. If it is

not specified (by a label) the mapper system will try to get the scheme representation

through an analysis of the ontology which consist in try to get the values associated to

the concepts through the data properties and if they return a null value assume that

the data is stored on an instance. If the analysis returns that other scheme was applied

the mapping process will end returning a negative results. The two schemes of

representation allowed are:

a. Instance representation: If they are represented by instances (an instance

represents the value of a concrete concept on a concrete company) the

process carried consists in listing the individuals of the ontology. In this

scheme each concept of the ontology is represented by a class, and the

instance of each class will contain the value associated to the concept.

b. Property representation: If the financial concepts are represented as

properties (datatype), the process consists in, through the instance which

represents the concrete company; read all the properties associated to

concepts and their values.

2. Once the concepts have been loaded in memory by the mapping system (with their

respective values) the process will load one by one all the concepts loaded and query

the Mapping Knowledge Base to get if the concept can be mapped. This information

consists in a particular SQL Query where two parameters are needed:

a. Concept: The first parameter needed is the concept that the system wants to

map.

b. Taxonomy: The second parameter consists in the name/ID of the taxonomy

which will be applied to generate the XBRL file. If the taxonomy changes, the

structure of XBRL document can change and the mapping can be different.

3. Once the Mapping Knowledge Base was queried and assuming that exists a mapping

element for the concept and the taxonomy provided, the mapper adapts the original

data structure of the concept to the XBRL data structure of the associated taxonomy.

One important characteristic of the mapper is that is not only able to make the mapping based

on the “structuration of the information” from the ontology structure to the XBRL taxonomy

structure. If for example exists some kind of conversion that should be done (imagine that a

concrete numerical concept which comes from the ontology needs to be multiplied for a

constant in the XBRL format) the mapper will do it. To make this possible, the mapper queries

the Mapping Knowledge Base and asks if the concept, for the selected taxonomy, needs some

kind of conversion. If the conversion is needed, the mapper will call a concrete

transformation/adaptation Class/Method through dynamic execution in order to convert the

concept value to the one specified in the Mapping Knowledge Base.

Figure 13. Mapping process.

Finally, the XBRL generator is the software component capable of generating XBRL

information. This part can be seen as a simple XML writer, but, in this case, using the

specifications of the taxonomy used.

4. Evaluation
The subsequent section describes the evaluation of SONAR. This section includes an

explanation of the research design throughout. Subsequently, the sample is described along

with results of the test. Finally, a discussion of the results is provided.

4.1. Research Design

The evaluation of this research proposal was required in order to determine its level of

accuracy .The aim of this study is to find out if SONAR provides good results in the construction

of XBRL files, taking this information from free access resources available in the web. Taking

this into account, twenty organizations from Spain were selected from the ones that are not

included in the stock market and which provide relevant and unstructured information to build

XBRL files. All of them were provided to SONAR and, once the system produced XBRL files, this

was compared to the output of this process performed in a manual way by four experts (each

of them completed 5 files describing 5 companies). These comparisons included two different

tests. On the one hand there is a quantitative test in which Sonar XBRL files and XBRL

generated by experts item by item are compared. Each XBRL includes 57 items (and 21 more

calculated from these values that are not taken into account). On the other hand, there is a

qualitative report for each company in which for every error detected, the expert must explain

the nature of the error and its possible sources. This qualitative analysis was carried out with

the help of the qualitative data analysis software NVIVO 2.0 (International QSR Pty Ltd).

4.2. Sample

The sample was composed of twenty companies from Spain. None of them are being valued in

stock markets and none of them were ever in that particular situation. All of them are IT

companies from all over Spain. Seven of them are from Madrid, four from Catalonia, three

from Valencia, two from the Basque Country, two from Galicia and two from Andalucía. In

order to guarantee the availability of economic data, all companies in the sample were

established before 2006. Data was collected for the 2008 fiscal year in December 2009 and

analyzed in January 2010.

With respect to the human sample, four experts were recruited. All of them have a Bachelor’s

degree in Economics and were pursuing an MBA. The sample was composed of 2 women and 2

men, with an average age of 27.3.

4.3. Results and discussion

QUANTITATIVE STUDY

The results of the tests, which were carried out on printed copies, were subsequently coded in

the statistical analysis tool SPSS. According to the sample, a total of 1,140 items must be

detected and coded in XBRL. Results of the process including data from Experts and SONAR can

be found in Table 2:

Table 2. Nominal, Expert and Sonar items identification results

 Nominal Expert SONAR

 Found Correct

Results 1140 1069 1020 947

As can be derived from results in Table 2, the experts can find 93.77 % of the relevant

information and SONAR 83.07% of this information. To evaluate the accuracy of SONAR, we

used the standard recall, precision and F1 measures. Recall and precision measures reflect the

different aspects of annotation performance. These measures were first used to measure an

Information retrieval system by Cleverdon, Mills and Keen [63]. The F1 measure was later

introduced by van Rijsbergen [67] in order to combine precision and recall measures, with

equal importance, into a single parameter for optimization. The use of these measures is not

new in crawlers testing [68, 69, 70, 71].

Precision, Recall and F1 measures are defined as follows:

Precision = Categories found and correct / Total Categories Found

Recall = Categories found and correct / Total Categories Correct

F1 = (2*Precision*Recall) / (Precision + Recall)

Taking this into account, these measures are as follows for SONAR taking as good data the

nominal one:

Precision = 0.9284, Recall = 0.8307, F1 = 0.8769

On the other hand, if we assume as a standard the data detected by experts, results are as

follows:

Precision = 0.9284, Recall = 0.8859, F1 = 0.9067

A quick look at the results gives the obvious impression that the combined measure is better

for the second case. Incidentally, experts did not detect 71 pieces of data from XBRL files and

these data pushed down recall and F1 a bit. In both cases the fraction of retrieved XBRL items

that are relevant remains unchanged while the fraction of relevant XBRL items that are

retrieved changes. However, these measures are more than acceptable compared to other

semantic technologies crawlers (e.g. [68, 72-73]).

However, a deeper analysis of results brings improved views. Table 3 shows results of the

expert and SONAR findings in two groups. The first one includes Balance sheet items (36) and

the second one includes only Income statement items (21).

Table 3. Nominal, Expert and Sonar Items identification results divided into Balance sheet

and Income statement items

 Nominal Expert SONAR

 Found Correct

Balance sheet 720 720 720 720

Income statement 420 349 300 227

Joint 1140 1069 1020 947

A quick look at results reveals that Balance sheet item identification is perfect both for Experts

and for SONAR. Hence, Income Statement items identification scores are dramatically

different. In this scenario, new Precision, Recall and F1 measures taking into account only the

Income statement items provide these results for SONAR:

Nominal Data. Precision = 0.7567, Recall 0.5405, F1 = 0.6306

Experts data. Precision = 0.7567, Recall = 0.6504, F1 = 0.6995

In order to find out if there are differences among companies in errors detected (122), Figure

14 shows error frequencies for examined enterprises. An error can be defined as a discrepancy

between a SONAR generated XBRL item and an expert generated XBRL item.

0

2

4

6

8

10

12

14

16

18

20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Errors found
per company

Figure 14. Error frequencies in companies in SONAR.

Taking into account data provided in Figure 14, we can clearly conclude that 76.22% of the

total errors found are concentrated in several companies (2, 3, 4, 7, 14, 19 and 20). A first look

at qualitative results reveals a concentration of errors in some enterprises and in Income

statement items, but in order to find out the sources of errors an explanation of the qualitative

must be provided.

QUALITATIVE STUDY

The objective of this qualitative study is to find out the main reasons for errors detected in the

evaluation of SONAR. To do so, after the questionnaires were filled out by experts they were

coded in NVivo which helps to look for coherent categories of errors. A total of 122 error

reports were included from sample. Table 4 summarizes the participants descriptions of the

source of errors.

Table 4. Descriptions of errors given by participants

Source # Errors found

No data. Item description mismatching 48

No data. Unknown source 21

Incorrect data. Data corresponding to other item 28

Incorrect data. Data corresponding to other year 16

Incorrect data. Unknown source 9

TOTAL 122

A total of 56.6% of the errors provides no data and the rest provides incorrect data. According

to the experts’ descriptions, only 24.5% of the errors are unknown.

The most important category according to its presence is “No data. Item description

mismatching”. A description of the experts shed light on this particular problem: “Data

provided in this website has their own particular format and nomenclature that is not easy to

match with XBRL items”. A possible solution to this mismatching for SONAR is to provide a

broader and more open description of the concepts in order to let the crawler locate and use

these items in a proper way.

The second category in importance is “Incorrect data. Data corresponding to other item”.

According to experts, many companies publish their financial information using “bizarre”

formats that can be decoded “only after a very time consuming task”. Thus, a possible solution

to this can be to expand the capacities of the parser to include improved TSiR features. Lastly,

the category “Incorrect data. Data corresponding to other year” presents the same problems

as the previous one, which can be partially improved using same methods.

Taking into account the results, the performance of SONAR is more than satisfactory. It is a fact

that perfect XBRL construction must be reached, but creating Balance sheet items in the

correct way is really a significant result. The lack of precision within the Income statement can

be, in a sense, a result of an incoherent publication format of the companies. There is also a

way of improvement for SONAR via a better description of XBRL items and improved TSiR

features.

5. Conclusions and Future Work
 Since the advent of the global economic crisis, the need for accurate, reliable but also ever-

growing financial knowledge has become vital for financial Information Systems with a critical

impact in markets. In addition, the use of widespread standards of representation of financial

information, such as XBRL language, has gained momentum and forced traditional analysis,

design and development of such systems towards its use.

In this work, we have fundamentally extended and complemented the previous work

envisaged with regards to the Semantic Financial Search Engine (SONAR), a conceptual

umbrella for a set of efforts and projects funded by both the EU and the Spanish Government,

which has proven to be a beneficial: Intelligent Financial Information System based on cutting-

edge technologies such as Semantic Technologies, Natural Language Processing (NLP) and

Knowledge Representation. The results forthcoming from this follow-up are threefold. First,

we have relied extensively on data crawlers in order to capture useful information from data

silos spread all over the Web. Secondly, the role of NLP as an Ontology Population basis

together with the benefit of logics as an underlying formal system of the software platform has

been validated through the improvements at the implementation and evaluation viewpoint.

Finally, the use of the XBRL language has implied a tremendous effort in terms of the

standardization and interoperability of the SONAR extension regarding potential integration

with other highly related Financial Information Systems.

To sum up, our approach has been deemed a significant step forward toward progress in

Intelligent Financial Information Systems, that is being validated by a number of industrial

alliances and real-world scenario validation, and which will be complemented by an ambitious

future work plan. This set up includes the testing of different formalisms which could yield

more expressivity than the ones underlying our current approach, and also the use of

Software-as-a-Service (SaaS) and Cloud Computing-based strategies to increase the amount of

data extracted, managed and stored, peering into large data management systems and data

intensive techniques.

6 Conflict of interests
The authors declare that there is no conflict of interests regarding the publication of this

article.

Acknowledgements
This work has been supported by the Spanish Ministry for Science and Innovation and the

European Commission (FEDER / ERDF) through project SeCloud (TIN2010-18650).

References

[1] R. Pinsker, S. Li S, Costs and benefits of XBRL adoption: early evidence, Communications of

the ACM. 51(3) (2008) 47-50.

[2] O. Abdelsalam, A. El-Masry, The impact of board independence and ownership structure on

the timeliness of corporate internet reporting of Irish-listed companies, Managerial Finance.

34(12) (2008) 907-918.

[3] A.R. Rahman, T.M. Tay, B.T. Ong, S. Cai, Quarterly reporting in a voluntary disclosure

environment: Its benefits, drawbacks and determinants, The International Journal of

Accounting. 42(4) (2005) 416-442.

[4] R.S. Debreceny, A. Rahman, Firm-specific determinants of continuous corporate

disclosures, International Journal of Accounting. 40(3) (2005) 249−278.

[5] M.J. Jones, J.Z. Xiao, Financial reporting on the Internet by 2010: a consensus view,

Accounting Forum. 28(3) (2004) 237-63.

[6] R. Debreceny, G. Gray, A. Rahman, The determinants of Internet financial reporting, Journal

of Accounting and Public Policy. 21(4/5) (2001) 371-394.

[7] A.S. Kelton, Y.W. Yang, The impact of corporate governance on Internet financial reporting,

Journal of Accounting and Public Policy. 27(1) (2008) 62-87.

[8] J.L. Gandía, Determinants of internet-based corporate governance disclosure by Spanish

listed companies, Online Information Review. 32(6) (2008) 791-817.

[9] M. Ettredge, J. Gerdes, Timeliness of investor relations data at corporate websites,

Communications of the ACM. 48(1) (2005) 95-100.

[10] J. Kingston, B. Schafer, W. Vandenberghe, Towards a financial fraud ontology: A legal

modelling approach, Artificial Intelligence and Law. 12(4) (2004) 419–446.

[11] M. Ettredge, V.J. Richardson, S. Scholz, Dissemination of information for investors at

corporate Web sites, Journal of Accounting and Public Policy. 21(4/5) (2002) 357-369.

[12] R. Pinsker, S. Gara, K. Karim, XBRL usage: A socio-economic perspective, Review of

Business Information Systems. 9(4) (2005) 59–72.

[13] R. Debreceny, G. Gray, The production and use of semantically rich accounting reports on

the Internet: XML and XBRL, International Journal of Accounting Information Systems. 2(1)

(2001) 47–74.

[14] A. Kambil, What is your Web 5.0 strategy?, Journal of Business Strategy. 29(6) (2008) 56-

58.

[15] R.A. Weber, XML, XBRL, and the Future of Business and Business Reporting. In: Roohani SJ.

(Ed.), Trust and Data Assurances in Capital Markets: The Role of Technology Solutions, Bryant

College, Smithfield, RI. (2003)

[16] F.D. Hodge, J.J. Kennedy, L.A. Maines, Does search-facilitating technology improve the

transparency of financial reporting?, Accounting review: A quarterly journal of the American

Accounting Association. 79(3) (2004) 687–703.

[17] O. Duangploy, D. Gay, International harmonization impact compared: illustration of

United States and Japan Financial Statement Ratio Analysis, Journal of American Academy of

Business. 6(1) (2005) 225–230.

[18] R. Pinsker, S. Li, Costs and benefits of XBRL adoption: early evidence, Communications of

the ACM. 51(3) (2008) 47-50.

[19] R.F. Premuroso, S. Bhattacharya, Do early and voluntary filers of financial information in

XBRL format signal superior corporate governance and operating performance?, International

Journal of Accounting Information Systems. 9(1) (2008) 1–20.

[20] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Scientific American. 284(5)

(2001) 34-43.

[21] R. Studer, V.R. Benjamins, D. Fensel, Knowledge engineering: Principles and methods,

Data & Knowledge Engineering. 25(1/2) (1998) 161-197.

[22] H.C. Yang, Automatic generation of semantically enriched web pages by a text mining

approach, Expert Systems with Applications. 36(6) (2009) 9709–9718.

[23] S.B. Park, S.S. Kim, S. Oh, Z. Zeong, H. Lee, S.R. Park, Target concept selection by property

overlap in ontology population, International Journal of Computer Science. 3(1) (2008) 14–18.

[24] T.C. Du, F. Li, I. King, Managing knowledge on the web - extracting ontology from html

web, Decision Support Systems. 47(4) (2009) 319–331.

[25] T.R. Gruber, A translation approach to portable ontology specifications, Knowledge

Acquisition. 5(2) (1993) 199-220.

[26] S. Staab, R. Studer, H.P. Schnurr, Y. Sure, Knowledge processes and ontologies, IEEE

Intelligent Systems. 16(1) (2001) 26-34.

[27] N.F. Noy, M.A. Musen, The PROMPT suite: Interactive tools for ontology merging and

mapping, International Journal of Human-Computer Studies. 59(6) (2003) 983-1024.

[28] T. Wahl, G. Sindre, A survey of development methods for semantic web service systems,

International Journal of Information Systems in the Service Sector. 1(2) (2009) 1-16.

[29] M. Shamsfard, A.A. Barforoush, Learning ontologies from natural language texts,

International Journal of Human-Computer Studies. 60(1) (2004) 17–63.

[30] A. Maedche, S. Staab, Ontology learning, In: Staab S, Studer R (Eds.) Handbook on

Ontologies, International Handbooks on Information Systems. Springer. (2004) 173–190.

[31] G. Petasis, V. Karkaletsis, G. Paliouras, Ontology population and enrichment: State of the

art. BOEMIE: Bootstrapping Ontology Evolution with Multimedia Information Extraction,

March 2007. http://www.boemie.org/deliverable d 4 3. (2007)

[32] T. Sugibuchi, Y. Tanaka, Interactive web-wrapper construction for extracting relational

information from web documents, WWW ’05: Special interest tracks and posters of the 14th

international conference on World Wide Web. (2005) 968–969

[33] A. Pan, J. Raposo, M. Álvarez, V. Carneiro, F. Bellas, Automatically maintaining navigation

sequences for querying semi-structured web sources, Data & Knowledge Engineering. 63(3)

(2007) 795–810.

http://www.boemie.org/deliverable%20d%204%203

[34] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals,

Soviet Physics-Doklady. 10(8) (1966) 707-710.

[35] H. Namgoong, H.G. Kim, Ontology-based controlled natural language editor using cfg with

lexical dependency, Proceedings of 2007 ISWC/ASWC. (2007) 353–366.

[36] H.G. Kim, B.H. Ha, J.I. Lee, M.K. Kim, A multi-layered application for the gross description

using semantic web technology, International Journal of Medical Informatics. 74(5) (2005)

399–407.

[37] A. Bernstein, E. Kaufmann, Gino - a guided input natural language ontology editor. In: I.F.

Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold, L. Aroyo (Eds.),

Proceedings of the International Semantic Web Conference, Lecture Notes in Computer

Science. Springer 4273 (2006) 144–157.

[38] B. McBride, Jena: A semantic web toolkit, IEEE Internet Computing. 6(6) (2002) 55–59.

[39] C. Wang, M. Xiong, Q. Zhou, Y. Yu, PANTO: A Portable Natural Language Interface to

Ontologies, Proceedings of the 4th European conference on The Semantic Web: Research and

Applications. 4519 (2007) 473–487.

[40] E. Kaufmann, A. Bernstein, L. Fischer, Nlp-reduce: A ”naive” butdomain-independent

natural language interface for querying ontologies, Proceedings of the 4th European Semantic

Web Conference. (2007)

[41] E. Sirin, B. Parsia, B. Cuenca-Grau, A. Kalyanpur, Y. Katz, Pellet: A practical owl-dl

reasoner, Journal of Web Semantics. 5(2) (2007) 51–53.

[42] E. Kaufmann, A. Bernstein, How useful are natural language interfaces to the semantic

web for casual end-users?, Proceedings of the 6th International and 2nd Asian Semantic Web

Conference (ISWC2007+ASWC2007). 4825 (2007) 281–294.

[43] P.R. Smart, Controlled natural languages and the semantic web, School of Electronics and

Computer Science, University of Southampton, Technical Report ITA/P12/SemWebCNL. (2008)

[44] S. Arthur, S.M. Sheffrin, Economics Principles in Action, Upper Saddle River, Prentice Hall.

(2003)

[45] D.D. Hawley, Artificial neural systems: A new tool for financial decision-making. JSTOR.

(1990)

[46] F.E.H. Tay, L. Shen, Economic and financial prediction using rough sets model, European

Journal of Operational Research. 141(3) (2002) 641-659.

[47] J.M. Gomez, F. Garcia-Sanchez, R. Valencia-Garcia, I. Toma, C. Garcia-Moreno. SONAR: A

Semantically Empowered Financial Search Engine, International Work-conference on the

Interplay between Natural and Artificial Computation. (2009)

[48] H.H. Zhu, S. Madnick. Semantic Integration Approach to Efficient Business Data Supply

Chain: Integration Approach to Inter-Operable XBRL, MIT Sloan School of Management

Research Paper Series. (2007)

[49] R. Garcia, R. Gil, Facilitating Business Interoperability from the Semantic Web. Linking

Enterprise Data, 3 (2010) 103-125.

[50] T. Declerck, H.U. Krieger, Translating XBRL Into Description Logic, An Approach Using

Protege, Sesame & OWL, Proceedings of Business Information Systems. (2006)

[51] R. Garcia, R. Gil, Triplificating and linking XBRL financial data, Proceedings of the 6th

International Conference on Semantic Systems. (2010)

[52] I. García-Manotas, E. Lupiani, F. García-Sánchez, R. Valencia-García, Populating Knowledge

Based Decision Support Systems, International Journal of Decision Support Systems. 2(1)

(2010) 1-20.

[53] P. Castells, B. Foncillas, R. Lara, M. Rico, J.L. Alonso, Semantic web technologies for

economic and financial information management, 1st European Semantic Web Symposium

(ESWS 2004). 3053 (2004) 473-487.

[54] M.S. Fox, M. Barbuceanu, M. Gruninger, J. Lin, An organizational ontology for enterprise

modeling, Simulating organizations: computational models of institutions and groups, MIT

Press, Cambridge. (1998) 131-152.

[55] C. Partridge, M. Stefanova, A Synthesis of State of the Art Enterprise Ontologies, Lessons

Learned. The BORO Program, LADSEB CNR. (2001)

[56] A.S. Losada, J.L. Bas, S. Bellido, J. Contreras, R. Benjamins, J.M. Gomez, Data Information

and Process Integration with Semantic Web Services. (2005)

[57] XBRL International (2009). XBRL: eXtensible Business Reporting Language. Retrieved June

19, 2009, from XBRL International Web site: http://www.xbrl.org

[58] R. Valencia-García, F. García-Sánchez, D. Castellanos-Nieves, J.T. Fernández-Breis,

OWLPath: an OWL ontology-guided query editor, IEEE Transactions on Systems, Man and

Cybernetics-Part A: Systems and Humans. (2010)

[59] IPP Taxonomy. (2011) Avalaible online at: http://www.xbrl.es/informacion/ipp.html

[60] S. Méndez, J. Labra, J. De-Andrés, P. Ordoñez, Analysis of XBRL documents containing

accounting information of listed firms using Semantic Web Technologies. In M.A. Sicilia, M.D.

Lytras (Eds.) Metadata and Semantics. (2009) 375-381.

[61] Q. Yan C.K. Selçuk, J. Tatemura, C. Songting, L. Fenglin, Supporting OLAP operations over

imperfectly integrated taxonomies, SIGMOD Conference. (2008) 875-888

[62] C.K. Selçuk, M. Cataldi, M.L. Sapino, C. Schifanella, Structure- and Extension-Informed

Taxonomy Alignment, ODBIS 2008. (2008) 1-8

[63] C.W. Cleverdon, J. Mills, E.M. Keen, Factors determining the performance of indexing

systems, Cranfield, U.K.: College of Aeronautics. (1966) 1-2.

[67] C.J. Van Rijsbergen, Information Retrieval. Newton, MA: Butterworth-Heinemann. (1979)

[68] A. García-Crespo, R. Colomo-Palacios, J.M. Gómez-Berbís, B. Ruiz-Mezcua, SEMO: a

framework for customer social networks analysis based on semantics, Journal of Information

Technology. 25(2) (2010) 178-188.

[69] K. Gao, S. Li, The cooperation model for multi-agents and the identification on replicated

collections for web crawler, International Journal of Modelling, Identification and Control.

11(3-4) (2010) 224-231.

[70] D.H.L. Goh, A. Chua, C.S. Lee, K. Razikin, Resource discovery through social tagging: a

classification and content analytic approach, Online Information Review. 33(3) (2009) 568-583.

[71] C.C. Chen, Y.D. Tseng, Quality evaluation of product reviews using an information quality

framework, Decision Support Systems. (2010)

[72] D. Jannacha, K. Shchekotykhin, G. Friedrich, Automated ontology instantiation from

tabular web sources—The AllRight system, Web Semantics: Science, Services and Agents on

the World Wide Web. 7(3) (2009) 136-153.

[73] S.H. Lin, K.P. Chu, C.M. Chiu, Automatic sitemaps generation: Exploring website structures

using block extraction and hyperlink analysis, Expert Systems with Applications. 38(4) (2011)

3944-3958.

