
 

 

 

Microservices 
 

Xabier Larrucea1, Izaskun Santamaria1, Ricardo Colomo-Palacios2, Christof Ebert 3 

 
1TECNALIA, Bizkaia, Spain. {xabier.larrucea;izaskun.santamaria}@tecnalia.com 

2 Østfold University College. ricardo.colomo-palacios@hiof.no 
3 Vector Consulting Services. Christof.Ebert@vector.com 

 

[Editor introduction]  

Microservices are gaining momentum across industries to facilitate agile delivery mechanisms for SOA 

and to migrate function-oriented legacy architectures towards highly flexible service-orientation. IDC 

forecasts for 2021 that 80 percent of application development on cloud platforms will be with 

microservices. Authors Xabier Larrucea, Izaskun Santamaria, Ricardo Colomo-Palacios, and myself 

present a brief overview on Microservices technologies and how to migrate. I look forward to feedback 

from both readers and prospective column authors. 

—Christof Ebert 

 

 

Inspired by Service-Oriented computing and opposite to monoliths, whose modules cannot be 

executed in an independent way, microservices are small applications that can be deployed 

independently, scaled independently and tested independently and that has a single responsibility [1]. 

This decomposition of the monolith into a granular system interacting via messages (RPC-based APIs 

or RESTful, for instance) enables organizations to achieve better time to market by means of swifter 

and more continuous deliveries but also enables agile teams to structure their work around these 

services [2], given that microservices are, by definition, autonomously developed [3, p. 1].  

 

Connecting microservices with the DevOps will boost continuous software engineering impact and 

benefits [4]. However, there are also issues and disadvantages in the use of microservices. On the 

challenges side are the difficulty behind the decomposition of the monolith into microservices, aspects 

related to continuous architecture monitoring and deployment, more complex testing, versioning and 

deprecating and state management. On the disadvantages side, one can find soft factors like the need 

of seniority and the difficulty to learn.  

 

Companies like Amazon, Deutsche Telekom, LinkedIn, Netflix, SoundCloud, The Guardian, Uber or 

Verizon are fast adopting microservices-based approaches. Often microservices are used to modernize 

legacy applications in organizations. Consequently, the goal is splitting such monolithic systems into 

microservices by means of refactoring. This supports the incremental modernization of legacy 

software as maybe the less risky option compared to the complete re-development of the whole 

system into microservices. This approach is easing the low-risk, small-scale incremental modernization 

that is often preferred to large-scale approaches.  

1 Technologies for Microservices 
Microservices software breaks systems and applications down to a more granular, modular level. It 

has been created as a SOA follow-up some ten years ago. It is about fragmenting complex applications 

to small pieces and a fluid delivery model where services are delivered on demand thus improving 

mailto:xabier.larrucea@tecnalia.com
mailto:ricardo.colomo-palacios@hiof.no
mailto:ricardo.colomo-palacios@hiof.no


 

 

performance. DevOps provides the process framework for developing, deploying, and managing the 

microservices container ecosystem. With a service-oriented refactored architecture DevOps can 

ensure fast delivery cycles by integrating the before silo-style business processes of development and 

operation. 

 

A variety of technologies for microservices have been evolved during the past two years [1,3]. Table 1 

provides an overview on current technologies and how we rate them qualitatively from our industry 

experiences. 

 

Table 1. Industry-grade Microservice Technologies 

  
Azure Service 

Fabric 
Lagom MicroProfile Spring Suite (Boot) 

Authentication Active Directory Basic 
JSON Web 
Token 

Spring Security 

Security Security Center Basic 
JSON Web 
Token 

Spring Security 

Tracing 
Event Tracing 
Windows (ETW) 

Basic OpenTracing Spring Cloud Sleuth  

Deployment Built-in   J2EE 
yes, especially for 
Spring framework 

Reliability Reliable Collections via others 
MicroProfile 
Fault 
Tolerance 1.0 

Built-in 

Cost pay free free free 

Orchestration 
Azure Container 
Service 

ConductR via others Spring Suite 

Monitoring 
(Health check) 

Application/Cluster
/service based 

not available 
MicroProfile 
Health Check 
1.0 

Hystrix 

Usability High Low Low Medium 

Containers 
Azure Container 
Service 

via others via others via others 

Language C# . NET, JAVA JAVA, Scala JAVA JAVA 

Website 

https://azure.micro
soft.com/en-
us/services/service-
fabric/ 

https://www.lagomfr
amework.com/ 

https://micro
profile.io/  

https://projects.spr
ing.io/spring-boot/ 

 

2 Migration to Microservices 
To our experience from introducing Microservices, there are some general aspects to consider when 

introducing a microservices migration: 

https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/service-fabric/
https://akka.io/
https://akka.io/
https://microprofile.io/
https://microprofile.io/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/


 

 

1. Be prepared for organizational changes. Microservices are ahead of a new business culture. 

2. Study the system. Identify dependencies by means of tools (e.g. Retrace, Dynatrace, 

SchemaCrawler …) or manually. 

3. Define the architecture. Architectural structure of the system must be defined including tools, 

frameworks…. Although it is not the time to choose the specific part of the system to be 

migrated, do not postpone platform selection and, if possible, include in the architecture 

proper DevOps enablers. The earlier, the better. 

4. Prioritize your components for migration. Develop your criteria for migration and include a 

study on the risks of each of the approaches before final adoption and migration. 

5. Design / Coding / Testing / Integration. Adopt an agile approach and, if possible, use DevOps 

tools on each phase e.g. Fuge; Git/Github; Jenkins; Phantom; Kubernetes…) 

 

Microservices, as any software evolution, present significant impact on quality attributes.  

 Security. Given that data is flowing among microservices, there is a need to secure such 

communication by means of encryption techniques but also it is needed to implement 

authentication mechanisms (see case study sidebar) 

 Performance. Microservices in general present lower performance than monoliths. Final 

performance depends on several factors, including network aspects (latency for instance) and 

virtualization (deployment in virtual machines imposes additional performance overhead).  

 Reliability. Again, microservices are, in general and by nature given their distributed essence, 

less reliable than monoliths. 

 Availability. In microservices architectures, the availability of a system depends on the 

availability of the microservices but also on the integration of such components. On the other 

hand, microservices reduce deployment time, increasing availability.  

 Maintainability. Microservices are, by nature, independent, making maintainability one of the 

best aspects in this approach.  

 Testability. A microservice is, initially, easier to test than a monolith. However, integration test 

can be much more complex depending on the number of components and their connections. 

 

There are obvious challenges with microservices. Migration presents also interrelated technical 

challenges regarding multi-tenancy, statefulness and data consistency that migration teams must 

tackle to ensure success. Beyond these purely-technical challenges, there is a set of more general 

aspects that can be potential threats for the migration process including monolith decoupling, data 

splitting, communication among services, effort estimation and DevOps infrastructure and resistance 

to change . In sum, challenges can be technical, economical and psychological.  

 

Microservices by nature are typically distributed. In agile and DevOps delivery models, each delivery 

has dependency impacts which must be analyzed, validated and considered for packaging. When 

operated across networks microservices can cause significant performance penalties that must be 

accommodated with additional architectural tweaks, like caching layers.  

 

Consider the impacts on tools and ALM/PLM. Along with DevOps Microservices push automation from 

application to infrastructure. Compared with manual infrastructure provisioning, configuration 

management tools will facilitate fast production provisioning. Configuration maintenance complexity 

can be reduced with an optimized Microservice architecture by recreating the production system in 

the development machines when moving from a monolithic block of software to a microservices 

approach.  



 

 

 

Microservices will facilitate the convergence of classic IT and embedded (real-time) systems [5]. 

Obviously more complex and critical applications with availability and security constraints should not 

be addressed entirely by a volatile cloud delivery model. To achieve continuous delivery for embedded 

systems devices must be connected, so machine to machine communications and an IoT (Internet of 

things) architecture should be implemented. However, in critical applications where failure is not an 

option, for example automotive, medical or aerospace, a more conservative approach with high focus 

on availability, safety and performance should be considered. 

3 Summary and Outlook 
Microservices are bringing several benefits, but they are also implying several hurdles to be overcome. 

An appropriate software architecture design for each application domain is needed for a successful 

microservices based solution. Currently microservice technologies are fast evolving. One of these 

evolutions is serverless computing. By means of this approach, common functionality (not business 

functionality as authentication, validation, monitoring…) is encapsulated into a hosting microservice 

handling these aspects and executing proper business functions. The system is then serverless or 

"function as a service (faas)", allowing AWS Lambda, Iron.io or Google functions hosting your business 

functions. 

 

Since microservices need DevOps, we recommend starting with a tailored DevOps strategy. It will have 

immediate value due to better integration across the life-cycle and can gradually evolve to a 

microservices delivery model – if appropriate. 

 

 

 

Sidebar: Case Study Microservices and Security  

During the development of an application based on Sonarqube and AngularJ, authors faced several 

problems related to Cross Origin Resource Sharing (CORS). In this case study, Sonarqube is used to 

analyze source code in different sites; a main application service gathers the information from these 

sites. By means of CORS, additional HTTP headers are used to gain permission to access selected 

resources from a server on a different origin (domain) (figure 1). This kind of requests are normally 

blocked (table 2) by browsers for security reasons, for instance, to avoid cyber-attacks. Therefore, in 

microservices scenarios, a particular microservice architecture can affect CORS behavior leading to 

the need to configure CORS options on each web browser. 

In fact, servers and browsers are implementing CORS and according to W3 

(https://www.w3.org/TR/cors/) “User agents commonly apply same-origin restrictions to network 

requests. These restrictions prevent a client-side Web application running from one origin from 

obtaining data retrieved from another origin, and also limit unsafe HTTP requests that can be 

automatically launched toward destinations that differ from the running application's origin“. On this 

basis the CORS security risk is mitigated by means of a proper configuration of this aspect in the set of 

available browsers. 

 

https://www.w3.org/TR/cors/


 

 

 
Figure 1: Common scenario where a user access through its browser to a website which gathers 

information from other services.  
 

Table 2. Browsers used in the environment, and how to enable/disable CORS 

 
 

 

4 References 
 

[1] J. Thönes, “Microservices,” IEEE Softw., vol. 32, no. 1, pp. 116–116, Jan. 2015. 

[2] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architecture Enables DevOps: 

Migration to a Cloud-Native Architecture,” IEEE Softw., vol. 33, no. 3, pp. 42–52, May 2016. 

[3] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis, “Microservices in 

Practice, Part 1: Reality Check and Service Design,” IEEE Softw., vol. 34, no. 1, pp. 91–98, Jan. 2017. 

[4] R. Colomo-Palacios, E. Fernandes, P. Soto-Acosta, and X. Larrucea, “A case analysis of enabling 

continuous software deployment through knowledge management,” Int. J. Inf. Manag., Nov. 2017. 

[5] Ebert, C. and K. Shankar: Industry Trends 2017. IEEE Software, ISSN: 0740-7459, vol. 34, no. 2, 

pp. 112-116, Mrc/Apr 2017 

 

5 Authors 
 

Additional Service 1

Main Application Service

XMLHttpRequest

XMLHttpRequest

XMLHttpRequest

User

HttpRequest

Cross Origin 
Resource Sharing 
(CORS)

Service 2



 

 

Xabier Larrucea is a senior project leader at Tecnalia. He is on the IEEE Software initiatives team and 

teaches at the University of the Basque Country. Contact him at xabier.larrucea@tecnalia.com. 

 

 

 

 

 

 

Izaskun Santamaria is a senior project leader at Tecnalia. She has more than 18 years’ experience in 

industrial contexts related to software engineering. Contact her at: Izaskun.santamaria@tecnalia.com  

 

 

 

 

 

 

Ricardo Colomo-Palacios is a full professor in the Computer Science Department 

at Østfold University College. Colomo-Palacios received a PhD in computer science 

from the Universidad Politécnica of Madrid. Contact him at ricardo.colomo-

palacios@hiof.no  

 

 

 

 

 

 

Christof Ebert is the managing director of Vector Consulting Services. He is on the IEEE Software 

editorial board and teaches at the University of Stuttgart and the Sorbonne in Paris. 

Contact him at christof.ebert@vector.com  

 

 

mailto:xabier.larrucea@tecnalia.com
mailto:Izaskun.santamaria@tecnalia.com
mailto:ricardo.colomo-palacios@hiof.no
mailto:ricardo.colomo-palacios@hiof.no
mailto:christof.ebert@vector.com

