
Continuous practices and technical debt:

a systematic literature review

Bjørn Arild Lunde, Ricardo Colomo-Palacios

Department of Computer Science

Østfold University College

1783 Halden, Norway

bjorn.a.lunde@hiof.no; ricardo.colomo-palacios@hiof.no

Abstract—Technical debt in software development is a

common problem that is overlooked by many development

teams. This debt can be generated from a variety of reasons,

including time pressure and complexity in software. Technical

debt in simple terms is when a simple and less optimized

solution is carried out in order to gain short term benefits,

which leads to refactoring and reworking code later on, costing

both time and money. The issue is present in both big,

established companies and small startups, and is the reason

why many of these small startups never get enough economic

grip before debt catch up and they go bankrupt. This paper

aims to address this problem by exploring how continuous

practices including DevOps could help resolve this issue by

adopting the right approaches into the software development

cycle and workflow. So as to collect information about these

topics, a systematic literature review has been conducted,

covering both positive and negative impacts these practices can

have on technical debt. The findings will present the current

practices used to manage and reduce the accumulation of

technical debt, if and how these approaches can be used to

reduce already existing technical debt and which of these

practices that have the biggest impact on technical debt. The

paper concludes that there’s potential for continuous practices

including DevOps to possibly reduce technical debt if applied

appropriately

Keywords- Technical debt, continuous integration,

continuous refactoring, continuous delivery, continuous release,

continuous deployment

I. INTRODUCTION

There are many activities required in a software
development process, and unfortunately, many of these
crucial activities don’t go hand in hand for a variety of
reasons like communication, outsourcing and different
groups of employees handling the different operations [1].
These authors explain that, in order to streamline these
activities, exploring continuous practices might be a useful
approach. These practices also allow developers to provide
the consumers with a continuous stream of products and
updates [2]. The authors also expand on the idea that these
approaches can allow teams and developers to deploy
changes without depending on each other. Even though the
term in itself is rather new, approaches like continuous
integration are already heavily adopted in open source
projects and industry settings [3]. Ståhl et al [4] conducted a

study back in 2019 where they interviewed consultants,
asking questions about the relationship between commits and
complexity in software. Eleven out of twelve participants
agreed that there was, in fact, a relationship between the two
factors. Two of the participants actually claimed that a high
frequency of smaller commits would result in higher
complexity, and that it’s the bigger changes in general that
lead to reduced technical debt and more efficiency.

Technical debt as a term has been utilized for describing
different kinds of issues in software development regarding
everything from building a system to deployment. The term
was first coined by Ward Cunningham in 1992, cited in [5].
In a nutshell, technical debt can describe the extra work you
have to do as a result from choosing an easy and poorly
optimized solution to achieve short-term benefits which will
increase cost over time. Kruchten et al. [5] believe that
technical debt is a result of scheduling pressure, and that
design and testing gets a lower priority than maybe it should.
In a time where software systems and development get
steadily more complex, this complexity can result in
technical debt, increasing development time and lowering
the quality of the product [6]. While practices like
Continuous Planning could resolve some of these issues [1].
The problem at hand might be too big to tackle without a
complete rework of the traditional workflow. In 2010, the
global technical debt was estimated to be close to 500 billion
USD and was expected to double in the span of only five
years [7]. Furthermore, the authors also explain that the lack
of academic understanding of the term could be one of the
reasons why this is such a difficult challenge to overcome.
Ten years after, there is currently an increasing and fertile
research community on Technical Debt and tools and
solutions are reported widely in the literature.

With continuous software engineering, developers are
able to deliver software at high paces [8]. The cornerstone of
continuous software engineering is the use of automation by
means of new practices and tools in the overall software
process [9]. In other words, continuous software engineering
aims at accelerating and increasing the efficiency of the
whole software process by means of creating and
establishing strong links among software engineering
activities [10].

In order to expand its repercussions, continuous practices
went beyond the conventional software development limits
to touch operations too. Thus, DevOps represents a nonstop

mailto:bjorn.a.lunde@hiof.no
mailto:ricardo.colomo-palacios@hiof.no

amalgamation between development and operations. DevOps
proficiently mixes software development including delivery,
as well as operations in a fluid and lean way [11]. Therefore,
DevOps assimilates a panoply of techniques targeting to
decrease software production and delivery times; these
techniques include continuous deployment or continuous
monitoring [12]. This is crucial for developers and quality
assurance professionals, benefiting from real data on the
development of new products and features [13].
Consequently, DevOps can be see as a culture shift; and this
change is based on a close collaboration to be built and
maintained among operations, quality assurance and
development [11].

The concept of DevOps surfaced in 2009 and describes a
process in which operations and software developers work
near one another in order to release software often and learn
from the end users based on their experiences [14]. A study
from 2019 explored how DevOps works in practice and did a
case study on five companies in order to get insight as to
how this affects their work. As a result of their study, the
authors concluded that DevOps could speed up changes in
the software, fixing of bugs and general handling of the
production [15]. With practices like DevOps and the other
continuous practices, a reduction in technical debt might be
feasible. At the time this is written, and to the authors’ best
knowledge, there is currently no systematic literature reviews
looking into the connection between these practices and
technical debt, but the topics themselves have some research
dedicated to them, mostly case studies and interviews. The
lack of research calls for more work to be done in order to
explore if and how continuous practices could be beneficial
for businesses to adopt in order to reduce technical debt.

This paper will follow the structure of a systematic
literature review, and the methodology will be described in
section II. The search results will be presented in section III,
before we present our findings in section IV, and finally
wrapping things up with a conclusion in section V.

II. RESEARCH METHODOLOGY

This section is dedicated to the description of the
methodology and the gathering of information in this study.

A. Systematic literature review

In the process of looking for resources, authors found a
good amount of papers covering DevOps, specific
continuous practices and technical debt, but the topics were
mostly discussed independently and rarely in conjunction to
each other. This is one of the reasons why authors decided to
proceed with a systematic literature review (SLR). SLRs
entail taking a deep dive into existing academic literature on
a topic, while evaluating and interpreting said content [16].
One strength of a SLR is that it covers a wide aspect of
research with different settings and methods, which means
that we can back up the findings if the results are similar in
the different kind of studies. There are two main phases of a
SLR, planning the review and conducting the review, both
with their sub-phases. The main idea of the first phase is to
identify the need for the research to be conducted in the first
place and the methods that will be used to fulfill this need.

The second phase starts with gathering of available research,
selection of the most relevant studies and the quality of these
studies, before lastly analyzing the data. To the authors
knowledge, there is no existing literature reviews on these
topics in the same setting.

B. Research questions

So as to accomplish the objective of the study presented
in this paper, three research questions have been formulated:

RQ1: What are the reported effects of continuous
practices and DevOps with regards to technical debt?

RQ2: Could continuous practices and DevOps help
reduce already existing technical debt?

RQ3: Which practices within the boundaries of DevOps
and continuous practices have an impact on technical debt?

C. Review protocol

The review protocol contains the tasks required to best
answer the research questions, which will be covered in the
following sections. The first step is selecting the scientific
databases, followed by the search strategy and study
selection.

D. Data source

In order to find relevant and reliable sources, the author
have selected the following scientific databases:

• ScienceDirect (http://www.sciencedirect.com)
• IEEE Xplore Digital Library

(http://ieeexplore.ieee.org)
• Springer Link (http://link.springer.com)
• ACM Digital Library (http://dl.acm.org)
These databases were selected because that they are

considered the most important databases in computing as a
research field. Apart from that, they are available using
institutional access schemas in authors’ institution. The
retrieval of information was executed by authors at the first
quarter of 2020 in the above-mentioned databases. Zotero
was used to support the process using its features of paper
storage but also to dodge duplications.

E. E. Search strategy

Since the goal of this work is to find a response for the
three research questions, the keywords used for the search
are based on these questions. Authors use Boolean operators
(AND & OR) to build the search string: AND for
concatenation of expressions and terms and OR to include
alternative spellings or words [17]. The search string used
are the same in all databases, and is as follows:

("Technical Debt") AND ("Continuous Integration" OR
"Continuous Deployment" OR "Continuous Delivery" OR
"DevOps" OR "Continuous Practices" OR "Continuous
Software Engineering")

The search string was modified and tested with different
variations and numbers of “continuous activities”. This string
covers important results of the literature while keeping the
number of results to a feasible number of articles.

F. Search process

The resources are all from the four databases stated
above. The results were processed in three steps. Firstly, all
the results from the databases were gathered. Secondly, all
the titles, abstracts and keywords of all the articles were all
read through to check relevance to the topic. Lastly, all of the
most relevant articles were read in its entirety and included
in the paper. The results can be found in section III.

G. Study inclusion and exclusion

To filter the results and decide which papers to keep and
not to keep, a set of criteria for inclusion and exclusion of
papers were applied.

• Inclusion criteria:
o Literature presenting current practices used to

reduce technical debt
o Literature focusing on technical debt and either

continuous practices, DevOps or both
o Literature discussing the benefits of continuous

practices
o Literature discussing the direct connection between

technical debt and continuous practices and/or DevOps
• Exclusion criteria
o Papers that does not have technical debt, DevOps or

continuous practices as the main focus.
o Books will be excluded.
o Papers not written in English.
o Papers that are inaccessible.

III. SEARCH EXECUTION

In this section authors present the results of the
aforementioned search process. The literature search ended
on Friday the 13th of March 2020.

TABLE I. SEARCH RESULTS FROM THE FOUR DATABASES

Source Initial result

Title,

abstract &

keywords

Full text

ScienceDirect 78 10 7

IEEE 104 12 6

Springer 194 10 4

ACM 134 13 6

Total 510 45 23

IV. FINDINGS

RQ1: What are the reported effects of Continuous
practices and DevOps with regards to technical debt?

In 2011, a workshop took place at the International
Conference on Software Engineering, with a goal of getting
a better understanding of how technical debt could be
managed [18]. In the report of the conference, a work by
John Heintz was cited. Heintz is the owner of a consulting
company called Gist Labs, provided a presentation on their
current situation on maintenance and quality of code in
regard to technical debt. He mentioned that businesses
commonly spend too much time checking code manually,
and that continuous integration combined with static analysis

could reduce technical debt by making the process more
autonomous. With continuous integration, one could be able
to discover errors and duplicate code earlier by having
repeatable tests [19]

A systematic approach named continuous refactoring
describes a process where the goal is to always keep the code
base at a satisfactory level of quality [20]. This concept was
explored through an experiment conducted on several
development teams. They explain that continuous refactoring
is done by continuously repaying the technical debt before it
builds up to a critical level. This does not only work as
damage control, but the authors also explain that the team
managers had enough knowledge to communicate better with
the developers and optimize old solutions rather than
working on new ones in situations where this was necessary.

One of the negatively reported practices in relation to
technical debt is continuous release (or continuous
deployment), or rapid releasing, which simply enough means
releasing features and updates on weekly, daily or sometimes
even hourly cycles [21]. Continuous release will often result
in extremely tight schedules, less time for testing and relies
on the users being willing to update frequently. Although all
of the above could cause technical debt according to Mäntylä
et al. [21], they also mentioned that Linux and FreeBSD
projects worked around this by having regular updates, but
no deadlines for certain tasks.

RQ2: Could continuous practices and DevOps help
reduce already existing technical debt?

While most literature discuss continuous practices as
approaches to prevent technical debt from building up,
there’s not a lot of discussion about whether or not it could
decrease already existing technical debt. However,
continuous analysis is mentioned as a tool to get a better
overview of existing technical debt and how it impacts the
developments process [22]. This way, the development team
can work together to assess the situation and act to keep the
debt at a manageable level. As mentioned in RQ1,
continuous refactoring is when the technical debt is
continuously repaid. One of the issues with the refactoring
approach is that fixing old solutions are not always easy and
requires experienced developers as well as a lot of time [20],
which means that figuring out when the right moment to
devote time and developers to doing this is crucial.
Therefore, continuous analysis and continuous refactoring
could potentially work really well together.

Even though continuous deployment could cause
scheduling issues and high pressure as mentioned in RQ1,
there are also benefits of adopting the hectic approach.
Refactoring and improvement to the code based on errors
and production incidents can be handled a lot earlier and
more quickly as a result of frequent feedback from both end
users and automated test procedures [23], effectively
decreasing the technical debt as it builds up. Yli-Huumo et
al. [20] also suggests adopting a portfolio approach in
addition to continuous refactoring to handle the technical
debt more systematically. This would be done by collecting
all cases of technical debt into a list, making it easier to
control.

RQ3: Which practices within the boundaries of
DevOps and continuous practices have an impact on
technical debt?

Continuous integration is mentioned in several studies
[24][25] to pose a beneficial impact in technical debt
management. This approach also allows developers to
integrate modules of a complex system more often, which
can avoid technical debt by not making integration more
complex as the modules don’t vary to much [26]. However,
continuous integration requires automated testing in order to
increase efficiency [27]. Ågren et al. also discusses how
continuous deployment is a natural extension of continuous
integration, and that these two approaches combined both
improve the quality of whatever product is being developed,
as well as decreasing the time it takes for the product to
touch the customers. Even though the effects of these
practices are positive if executed properly and with care, they
aren’t free of risks. As more completed builds of a product
are being released, validation and tailoring the product for its
purpose gets more difficult and increases the risk of work
being wasted as the focus often gets shifted towards the
technology rather than the users input [28]. It is challenging
to prevent any form of technical debt during a development
process, but by adopting continuous integration, the technical
debt can be massively prevented if the correct automated
tests are in place [29].

Another impactful approach is continuous
experimentation. This is a trending practice among the
industry giants such as Microsoft and allows for companies
to gather test data from a fraction of their users by using
traditional techniques like A/B testing earlier in the
development process to help decide whether to keep working
on a specific functionality or rework it before releasing it to
the public [30].Technical debt stemming from the source
code or poor experimentation logic will also often be
avoided using traffic routing as part of the process, where
you run multiple versions of the application in parallel [31].
A downside to this approach is resource consumption, as
bandwidth and CPU usage among other things increase
while doing experiments.

V. CONCLUSION

This paper reports the current situation and practices
regarding management and accumulation of technical debt.
The research conducted was articulated as a systematic
literature review, following the guidelines of Barbara
Kitchenham [16]. As mentioned by Martini et al. [22],
management of technical debt is a topic without too much
research dedicated to it, and such an important topic deserves
more attention.

One of the most commonly mentioned approaches in the
connection of continuous practices and technical debt is
continuous refactoring, where the debt is repaid as it builds
up. Continuous integration is also brought up by industry
professionals as a tool for preventing technical debt by
discovering errors and duplicate code early. These two
practices might serve as steps in the right direction to prevent
debt from reaching critical levels, and continuous integration
is even a suggested strategy to adopt by these professionals

(RQ1). There are several more practices in the realm of
continuous practices that could affect the technical debt as
well, but these aren’t being discussed as much in the
literature. While approaches like continuous release may
increase efficiency, it might have a negative impact on
technical debt due to high amounts of stress and little time
for testing.

REFERENCES

[1] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” J. Syst. Softw., vol. 123, pp. 176–189, Jan.
2017, doi: 10.1016/j.jss.2015.06.063.

[2] S. S. de Toledo, A. Martini, A. Przybyszewska, and D. I. K. Sjøberg,
“Architectural technical debt in microservices: a case study in a large
company,” in Proceedings of the Second International Conference on
Technical Debt, Montreal, Quebec, Canada, May 2019, pp. 78–87,
doi: 10.1109/TechDebt.2019.00026.

[3] F. Zampetti, C. Vassallo, S. Panichella, G. Canfora, H. Gall, and M.
Di Penta, “An empirical characterization of bad practices in
continuous integration,” Empir. Softw. Eng., Jan. 2020, doi:
10.1007/s10664-019-09785-8.

[4] D. Ståhl, A. Martini, and T. Mårtensson, “Big Bangs and Small Pops:
On Critical Cyclomatic Complexity and Developer Integration
Behavior,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-
SEIP), May 2019, pp. 81–90, doi: 10.1109/ICSE-SEIP.2019.00017.

[5] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical Debt: From
Metaphor to Theory and Practice,” IEEE Softw., vol. 29, no. 6, pp.
18–21, Nov. 2012, doi: 10.1109/MS.2012.167.

[6] C. Ebert, J. Heidrich, S. Martinez-Fernandez, and A. Trendowicz,
“Data Science: Technologies for Better Software,” IEEE Softw., vol.
36, no. 6, pp. 66–72, Nov. 2019, doi: 10.1109/MS.2019.2933681.

[7] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical
debt,” J. Syst. Softw., vol. 86, no. 6, pp. 1498–1516, Jun. 2013, doi:
10.1016/j.jss.2012.12.052.

[8] R. V. O’Connor, P. Elger, and P. M. Clarke, “Continuous software
engineering—A microservices architecture perspective,” J. Softw.
Evol. Process, vol. 29, no. 11, p. e1866, 2017, doi: 10.1002/smr.1866.

[9] R. Colomo-Palacios, E. Fernandes, P. Soto-Acosta, and X. Larrucea,
“A case analysis of enabling continuous software deployment through
knowledge management,” Int. J. Inf. Manag., vol. 40, pp. 186–189,
2018, doi: 10.1016/j.ijinfomgt.2017.11.005.

[10] D. Ameller, C. Farré, X. Franch, D. Valerio, and A. Cassarino,
“Towards continuous software release planning,” in 2017 IEEE 24th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), Feb. 2017, pp. 402–406, doi:
10.1109/SANER.2017.7884642.

[11] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,” IEEE
Softw., vol. 33, no. 3, pp. 94–100, May 2016, doi:
10.1109/MS.2016.68.

[12] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices
Architecture Enables DevOps: Migration to a Cloud-Native
Architecture,” IEEE Softw., vol. 33, no. 3, pp. 42–52, May 2016, doi:
10.1109/MS.2016.64.

[13] J. Roche, “Adopting DevOps Practices in Quality Assurance,”
Commun ACM, vol. 56, no. 11, pp. 38–43, Nov. 2013, doi:
10.1145/2524713.2524721.

[14] M. Z. Toh, S. Sahibuddin, and M. N. Mahrin, “Adoption Issues in
DevOps from the Perspective of Continuous Delivery Pipeline,” in
Proceedings of the 2019 8th International Conference on Software
and Computer Applications, Penang, Malaysia, Feb. 2019, pp. 173–
177, doi: 10.1145/3316615.3316619.

[15] L. E. Lwakatare et al., “DevOps in practice: A multiple case study of
five companies,” Inf. Softw. Technol., vol. 114, pp. 217–230, Oct.
2019, doi: 10.1016/j.infsof.2019.06.010.

[16] B. Kithenham, “Procedures for Performing Systematic Reviews,” p.
33, Jul. 2004.

[17] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor,
E. S. de Almeida, and S. R. de Lemos Meira, “A systematic mapping
study of software product lines testing,” Inf. Softw. Technol., vol. 53,
no. 5, pp. 407–423, May 2011, doi: 10.1016/j.infsof.2010.12.003.

[18] I. Ozkaya, P. Kruchten, R. L. Nord, and N. Brown, “Managing
technical debt in software development: report on the 2nd
international workshop on managing technical debt, held at ICSE
2011,” ACM SIGSOFT Softw. Eng. Notes, vol. 36, no. 5, pp. 33–35,
2011.

[19] R. J. Eisenberg, “A threshold based approach to technical debt,”
ACM SIGSOFT Softw. Eng. Notes, vol. 37, no. 2, pp. 1–6, 2012.

[20] J. Yli-Huumo, A. Maglyas, and K. Smolander, “How do software
development teams manage technical debt? – An empirical study,” J.
Syst. Softw., vol. 120, pp. 195–218, Oct. 2016, doi:
10.1016/j.jss.2016.05.018.

[21] M. V. Mäntylä, B. Adams, F. Khomh, E. Engström, and K. Petersen,
“On rapid releases and software testing: a case study and a semi-
systematic literature review,” Empir. Softw. Eng., vol. 20, no. 5, pp.
1384–1425, Oct. 2015, doi: 10.1007/s10664-014-9338-4.

[22] A. Martini, J. Bosch, and M. Chaudron, “Investigating Architectural
Technical Debt accumulation and refactoring over time: A multiple-
case study,” Inf. Softw. Technol., vol. 67, pp. 237–253, Nov. 2015,
doi: 10.1016/j.infsof.2015.07.005.

[23] E. Kula, A. Rastogi, H. Huijgens, A. van Deursen, and G. Gousios,
“Releasing fast and slow: an exploratory case study at ING,” in
Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Tallinn, Estonia, Aug. 2019,
pp. 785–795, doi: 10.1145/3338906.3338978.

[24] J. Holvitie et al., “Technical debt and agile software development
practices and processes: An industry practitioner survey,” Inf. Softw.
Technol., vol. 96, pp. 141–160, Apr. 2018, doi:
10.1016/j.infsof.2017.11.015.

[25] B. Adams and S. McIntosh, “Modern Release Engineering in a
Nutshell – Why Researchers Should Care,” in 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Mar. 2016, vol. 5, pp. 78–90, doi:
10.1109/SANER.2016.108.

[26] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of
software in automated production systems: Challenges and research
directions,” J. Syst. Softw., vol. 110, pp. 54–84, Dec. 2015, doi:
10.1016/j.jss.2015.08.026.

[27] S. M. Ågren, E. Knauss, R. Heldal, P. Pelliccione, G. Malmqvist, and
J. Bodén, “The impact of requirements on systems development
speed: a multiple-case study in automotive,” Requir. Eng., vol. 24,
no. 3, pp. 315–340, Sep. 2019, doi: 10.1007/s00766-019-00319-8.

[28] E. Klotins, M. Unterkalmsteiner, and T. Gorschek, “Software
engineering in start-up companies: An analysis of 88 experience
reports,” Empir. Softw. Eng., vol. 24, no. 1, pp. 68–102, Feb. 2019,
doi: 10.1007/s10664-018-9620-y.

[29] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” J. Syst. Softw., vol. 101, pp.
193–220, Mar. 2015, doi: 10.1016/j.jss.2014.12.027.

[30] G. Schermann, “Continuous experimentation for software
developers,” in Proceedings of the 18th Doctoral Symposium of the
18th International Middleware Conference, Las Vegas, Nevada, Dec.
2017, pp. 5–8, doi: 10.1145/3152688.3152691.

[31] G. Schermann, J. Cito, and P. Leitner, “Continuous Experimentation:
Challenges, Implementation Techniques, and Current Research,”
IEEE Softw., vol. 35, no. 2, pp. 26–31, Mar. 2018, doi:
10.1109/MS.2018.111094748.

