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Abstract  
Over the last three decades, researchers have attempted to shed light into the requirements traceability problem 

by introducing tracing tools, techniques, and methods with the vision of achieving ubiquitous traceability. 

Despite the technological advances, requirements traceability remains problematic for researchers and 

practitioners. This study aims to identify and investigate the main challenges in implementing (semi-)automated 

requirements traceability, as reported by recent literature. We carried out a systematic literature review based on 

the guidelines for systematic literature reviews in software engineering, proposed by Kitchenham. We retrieved 

4530 studies by searching five major bibliographic databases and selected 70 primary studies. These studies 

were analyzed and classified according to the challenges they present and/or address. We identified 21 

challenges and classified them into five categories. Findings reveal that the most frequent challenges are 

technological challenges, in particular low accuracy of traceability recovery methods. Findings also suggest that 

future research efforts should be devoted to the human facet of tracing, to explore traceability practices in 

organizational settings, and to develop traceability approaches that support agile and DevOps practices. Finally, 

we recommend researchers to leverage blockchain technology as a suitable technical solution to ensure the 

trustworthiness of traceability information in interorganizational software projects. 
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1 Introduction 
 
The concept of requirements traceability (RT) was introduced more than thirty years ago by researchers and 

practitioners [1]. Traceability has evolved from just tracing requirements to implementation and test artifacts 

[2], to playing a significant role in various software and systems engineering activities, such as change and 

defect management [2, 3], project management [3], validation and verification [4], software maintenance [5], 

and impact analysis [6]. Traceability is particularly important in safety-critical systems [7–9], as it ensures 

safety which is crucial for systems whose failure may result in loss of life, loss or misuse of sensitive 

information, and major financial loss. 

According to Gotel and Finkelstein [10], requirements traceability (RT) refers to “the ability to describe and 

follow the life of a requirement, in both a forwards and backwards direction (i.e., from its origins, through its 

development and specification, to its subsequent deployment and use, and through all periods of on-going 

refinement and iteration in any of these phases)”. The typical traceability process model is described by Gotel 

et.al [11] and entails the creation, maintenance and use of trace links within the scope of a defined traceability 

strategy. The manual creation of trace links poses the risk of inconsistencies, particularly in complex software 

projects with a variety of artifacts and relations among them. To reduce the burden of manual tracing tasks 

which are time-consuming and tedious, automation is of major importance [12]. In fact, enhancing the automatic 

degree of tracing activities was identified as the second hottest research topic in a recent systematic literature 

review (SLR) on RT technologies [13]. In this regard, information retrieval techniques have been widely shown 

to support the (semi-)automated creation of trace links [14]. However, these textual-based techniques tend to 

generate traceability matrices with high recall and low precision [15]. Due to the high amount of false positives 

generated by these techniques, human analysts are required to vet candidate trace links and make a final 

decision on whether to accept or reject these trace links [16]. 

Despite the vast body of knowledge that exists on traceability, traceability practices are far from being mature 

[17]. Over years, RT in general and (semi-)automated RT in particular have been widely identified as 

problematic, by industry [18–23]. According to the NaPIRE (Naming the Pain in Requirements Engineering) 

survey, 32.4% (158 out of 488) of the respondents positioned “missing traceability” in the top 15 requirements 
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engineering (RE) challenges [24]. This is a concerning value, given the consequences that the lack of 

traceability can reverberate throughout the software development process and product, such as less maintainable 

software or defects due to inconsistencies [17].  

Traceability researchers strived to explore requirements traceability challenges that led to a lack of 

implementation or an implementation of RT in a haphazard manner [21, 25–27]. The foundational work in this 

dimension is laid by Gotel and Finkelstein [10]. These authors attribute the poor requirements traceability 

practices to the lack of a common definition and the perception that traceability is expected to address 

conflicting problems in the context of different users, projects and tasks. Further, the Center of Excellence for 

Software Traceability (CoEST) published a technical report in 2011 [28], in which traceability researchers and 

practitioners within CoEST presented their vision for traceability and identified eight challenges that need to be 

addressed to achieve the vision. The last challenge entails making traceability ubiquitous, i.e. traceability that is 

built into the system or software engineering process. This challenge has been named the grand challenge of 

traceability, as it requires progress with the seven remaining challenges: purposed, cost-effective, configurable, 

trusted, scalable, portable, and valued [28]. 

Our study aims to contribute to this body of knowledge by identifying and classifying challenges of (semi-

)automated RT, as reported by recent literature. To achieve this aim, we carried out a systematic literature 

review and reviewed 70 primary studies. To the best of our knowledge, the last similar literature review was 

conducted in 2009 by Winkler and Pilgrim [17]. Therefore, there is a need for an updated and comprehensive 

study that intends to provide a holistic view of (semi-)automated RT challenges (for related works, see Section 

2).  

The contributions of this study are as follows: (i) the identification of 21 domain-agnostic challenges and their 

classification into five categories, (ii) the proposal of blockchain as a suitable solution to ensure reliability and 

availability of traceability across organizational boundaries (iii) the identification of research gaps and the call 

for further research efforts in the following dimensions: distributed traceability, human factors, traceability 

approaches in agile and continuous software engineering, and more exploratory studies in order to enhance the 

comprehension of traceability practices. 

The remainder of the study is organized as follows: We present related works in Section 2, and the research 

methodology in Section 3. In Section 4, we introduce the results in terms of the primary studies overview and 

the identification of the challenges. These results are discussed in relation to related work in Section 5, along 

with directions for future research and validity threats. Finally, we conclude the study in Section 6. 

 

2 Related Work 
 
The summary of related works is provided in Table 1 and it indicates that the last comprehensive literature 

review focused on RT challenges is conducted in 2009 and published in 2010. In what follows, we present 

related works:  

Ramesh [29] conducted surveys with participants in 26 organizations and classified them into low-end and high-

end users of traceability, according to their underlying motivation to implement traceability. While low-end 

users perceive traceability as a mandate, high-end users perceive traceability as an important quality attribute of 

system and software engineering. This study also presents factors influencing the practice of requirements 

traceability and categorizes them into environmental, organizational and system development contexts. 

However, the emergence of distributed development and agile paradigms introduces the need for a new study in 

this dimension. 

Blaauboer et al. [18] conducted a case study in order to identify factors influencing the decision to use 

requirements traceability. Given the management perspective of this study, the following factors were identified: 

organization awareness, customer awareness, return on investment, stakeholder preferences, and process flow. 

The authors emphasized the lack of awareness of software project leaders regarding traceability. Conversely, the 

scope of our study is not limited to the management perspective. 

Kannenberg and Saiedian [30] identified the following challenges of implementing RT: costs, change 

management, different stakeholders viewpoints, organizational problems, and poor tool support. They observed 

that many organizations struggle to comprehend the importance and benefits of traceability and suggested 

organizational changes and better tool support in order to reap these benefits. Winkler and Pilgrim [17] carried 

out an extensive literature review that was conducted in 2009 and published in 2010. The goal of this study was 

to explore traceability in requirements engineering and model-driven development. These authors pointed out 

natural, technical, economical, and social factors that hinder the implementation of traceability practices in 

industry. Additionally, they recommended further research on improving the human factor in traceability, 

enabling distributed traceability, and providing support for practical problems in industry. Our study follows a 
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similar approach but provides an updated view of (semi-)automated RT challenges, as reported by recent 

primary studies.  

Torkar et al. [26] identified requirements traceability tools, techniques and challenges by reviewing studies 

published within the period 1997-2007. According to these authors, cost is the main factor that hinders the 

implementation of adequate traceability practices. Regan et al. [2] reported on 11 traceability challenges that 

were categorized into management, social, and technical issues. Some of the reported challenges are costs, lack 

of guidance, political issues, and tool issues. Although these authors advocate the relevance of the challenges in 

both general and safety-critical domains, they acknowledge that the need to ensure accountability in safety-

critical domains poses further complexities to the implementation of automated traceability. 

Nair et al. [31] explored the evolution of requirements traceability research by reviewing studies published in 

the requirements engineering conference (RE) within the period 1993-2012. This review addressed various 

aspects of requirements traceability, including their challenges. The authors report an increasing interest in 

automated traceability and suggest traceability visualization as an area for further research. On the contrary, our 

systematic literature review (SLR) covers recently published studies which are not constrained to a specific 

conference or journal. 

Mustafa and Labiche [4] reviewed studies that focused on traceability in heterogeneous systems. The authors 

report a minimal research effort on modeling traceability among heterogeneous artifacts and call for more 

research in this dimension. Our study takes into account requirements traceability among heterogeneous 

artifacts, albeit in a more general approach. Furthermore, Wang et al. [13] carried out a systematic literature 

review to identify RT technologies and their respective challenges. Their findings indicated the following 

challenges: automated, trustworthy, lightweight, scalable, dynamic, tracing non-functional requirements, value-

perceptible, cost-effective, coordinated, and expressible. Our study, however, takes a different approach by 

explicitly identifying challenges throughout the tracing process, independently of specific technologies. For 

instance, our study takes into account the human factor in traceability, which is outside the scope of Wang et al. 

[13]. 

Recently, Maro et al. [27] conducted a tertiary literature review, a multi-vocal literature review and a case study 

in the automotive domain. They identified 22 traceability challenges and categorized them into 7 groups: human 

factors, uses of traceability, knowledge of traceability, tool support, organization and processes, measurement of 

traceability and exchange within and across organizations. Instead of that, we carry out a systematic literature 

review that intends to identify and classify domain-independent challenges of (semi-)automated RT.  

Table 1 summarizes the aforementioned related works and points out the main differences in terms of 

publication year, research focus, research method, number of studies/organizations and period of SLR. We 

notice a limited number of studies that focus on investigating challenges of RT practices, which are referred to 

as evaluation research according to the requirements engineering paper classification proposed by Wieringa et 

al. [32]. Additionally, the number of organizations considered by these four studies is low, except from 

Ramesh’s [29] study. The other set of studies are literature reviews (tertiary, systematic literature reviews or 

multi-vocal) to explore RT challenges as reported by previous literature. The number of studies included in 

these reviews range from eight [2] to 330 primary studies [4]. Although there are few literatures reviews related 

to this topic, the last one that aims to explore domain-agnostic challenges of implementing (semi-)automated 

requirements traceability was carried out by Winkler and Pilgrim [17] in 2009. Therefore, as mentioned before, 

there is a need for an updated and comprehensive study in this area. 

 
Table 1. Related works 

 
Study 

Reference 

Author(s) Publication 

Year 

Focus 

 

Research 

method 

# Studies / 

Organizations 

Period of 

SLR 

[29] Ramesh 1998 Influencing factors 

on the use and 

adoption of RT 

Evaluation 

research 

26 

organizations 

- 

[18] Blaauboer 

et al. 

2007 Influencing factors 

on the decision to 

use RT 

Evaluation 

research 

1 organization - 

[30] Kannenberg 

and 

Saiedian 

2009 Challenges of RT Review - - 
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[17] Winkler and 

Pilgrim 

2010 Traceability in RE 

and model-driven 

development and 

their challenges 

Review - - 

[26] Torkar et al. 2012 Factors hindering 

the implementation 

of RT 

SLR and 

Evaluation 

research 

52 primary 

studies + 2 

organizations 

1997-2007 

[2] Regan et al. 2012 Barriers faced when 

implementing RT 

Review 8 primary 

studies 

2005-2011 

[31] Nair et al. 2013 The evolution of the 

RT research in the 

RE conference 

SLR 70 primary 

studies 

1993-2012 

[4] Mustafa and 

Labiche 

2017 Modeling 

traceability among 

heterogeneous 

artifacts 

SLR 330 primary 

studies 

2000-2016 

[13] Wang et al. 2018 RT technologies SLR 114 primary 

studies 

2000-2016 

[27] Maro et al. 2018 Traceability 

challenges on the 

automotive domain 

Tertiary study + 

multi-vocal 

literature review 

+ Evaluation 

research 

24 secondary 

studies + 245 

sources + 1 

organization 

2007-2017 

 

3 Research Method 
 
We carried out a systematic literature review that relies on the guidelines for performing systematic reviews in 

software engineering proposed by Kitchenham [33]. In what follows, the review process is thoroughly explained 

[33]: 

 

3.1 Planning the review 
The review protocol consists of relevant research question(s), search strategy and inclusion/exclusion criteria. 

We developed the protocol via brainstorming sessions and performed searches separately in two rounds. 

Feedback from these rounds was used to uncover problems in the initial version of the protocol and to improve 

its effectiveness.  

 

3.1.1 Research Question 
This study is aimed to identify and classify challenges in implementing (semi-)automated RT, as reported by 

recent literature. Therefore, we raise the following research question: 

RQ: “What are the challenges in implementing (semi-)automated RT that have been reported in literature?” 

The research question was designed according to the question structure proposed by Kitchenham [33]. In this 

regard, we define requirements traceability as the population or the subject of the study, (semi-)automation as 

the intervention and challenges as the outcomes. 

 

3.1.2 Search Strategy 
After setting the scope of this study, we defined the search strategy, search string and online databases, based on 

our experience with SLRs in software engineering [34–36]. This process was done prudently, to ensure the 

precision of search strings and consequently minimize threats, such as inappropriate results, missing relevant 

studies or an increased overhead [37]. Regarding search strategies, Jalali and Wohlin [38] compared two main 

search strategies for systematic literature reviews: database search and backward snowballing and concluded 

that there are no significant differences between the conclusions and patterns derived from these approaches. In 

this regard, we employed database search as the first-step search strategy, since it is the recommended approach 

in software engineering [38]. Nonetheless, Jalali and Wohlin [38] also pointed out that database searches lead to 

a lot of noise, meaning a higher number of irrelevant studies than included studies. Therefore, to mitigate the 

potential risk of overlooking relevant studies, we also carried out backward snowballing technique, as 

complementary to the database search [33]. Reference lists of the selected studies were scanned and went 

through the three-stage selection process (See Fig.1). 
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Figure 1. Three-stage selection process 

 

The formulated query aims to identify the wide spectrum of available literature focused on (semi-)automated 

requirements traceability. We identified three main terms and their respective forms. The first two terms are 

related to the subject of the study, which is requirements traceability. We also used the term “software”, since 

we noticed that researchers tend to overlook the term “requirements traceability” and use “software traceability” 

instead. Moreover, we incorporated the term “tracing”, as an alternative form of “traceability”. The last group of 

terms consists of automated and (semi-)automated, which have been used interchangeably in RT literature. It is 

noteworthy that we conducted trial searches with other terms, e.g., “semi-automatic, semi-automation, 

assisted”, however, we did not identify further relevant studies. We concatenated these three groups of terms 

using the Boolean operator “AND”, and their forms using the Boolean operator “OR”. The final search string 

was (automated OR semi-automated) AND (requirements OR software) AND (traceability OR tracing).  

Given that different search engines have different requirements, for instance some search engines do not allow 

nesting, we tailored our search string to these requirements. The search string was issued in five major online 

databases, as suggested by Kuhrmann et al. [37]. 

The search string was executed in each of the databases in two rounds: firstly, in February 2020 and finally in 

June 2020. We delimited the time period to 2009-2019 because the last literature review similar to our approach 

was conducted in 2009 (See Section 2). We also employed the filter “Computer Science”, where available. 

Finally, a set of 4530 studies was retrieved as shown Table 2. 

 

Table 2. Overview of studies 

Database Initial search First Exclusion Final Exclusion 

IEEE Xplore 267 52 36 

ACM Digital Library 246 13 8 

Springer Link 1470 17 8 

Science Direct 1123 7 5 

Wiley Online 1424 3 3 

Selected studies 4530 92 60 

Backward snowballing   10 

Primary studies   70 

 

3.1.3 Inclusion and Exclusion Criteria 
Given the high amount of studies retrieved from the database search, we followed a rigorous and reproducible 

selection process, by defining inclusion and exclusion criteria [37], as follows: 
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A) Inclusion criteria 

• The study must be published within the period 2009-2019. 

• The study must be available as a full-text article. 

• The study is included if it identifies or addresses at least one challenge of (semi-)automated 

requirements traceability. 

B) Exclusion criteria 

• The study is excluded if it is not written in English. 

• The study that focuses on traceability in domains other than software engineering is excluded. 

• The study is excluded if it focuses on manual traceability. 

• If the same article is available in more than one database, the versions available in databases other than 

the one that provides the article for download are excluded [37]. 

• If a conference article is followed by a journal article, the conference article is excluded (given that a 

journal article is a higher-value publication and extends the conference publication) [37]. 

 

3.2 Conducting the Review 

 
3.2.1 Selection of Studies 
The selection process consisted of three stages, as depicted in Fig. 1. Firstly, we retrieved studies from online 

databases using the search strategy defined in Section 3.1.2. This first stage generated a total of 4530 studies. 

After removing duplicates, we assessed the title, abstract, and introduction/conclusion (when necessary) of the 

studies, against the inclusion/exclusion criteria. In this stage, we selected 92 studies, and collected their full-

texts using the reference manager, Zotero. Further, we independently read the full-texts and made individual 

decisions regarding the final selected studies, based on their quality criteria. 

Despite some differences in our evaluations, concordance between quality scores was achieved. Disagreements 

were resolved through discussions, for instance, studies such as [26, 27] that use both literature review and 

empirical research methods, were included after discussions because they were evaluated to provide relevant 

findings. After achieving consensus, we selected 60 final primary studies and excluded the remaining 32 studies 

(for the list of excluded studies, see [39]). Studies were excluded if they focused on benefits of RT, e.g., [5, 25]; 

if they were short versions of other studies (in such a case we selected the extended version), e.g., [40, 41]; if 

they were secondary studies, e.g., [4, 13, 30]. Further, we scanned the reference lists of the selected primary 

studies and retrieved 20 studies. These studies went through the second stage of the selection process and 10 of 

them were selected. Finally, a total of 70 studies compose the final set of primary studies (See Appendix). 

 

3.2.2 Study Quality Assessment 
According to Kitchenham [33], an agreed upon definition of “quality of studies” does not exist. Bearing this in 

mind, we formulated quality questions based on our experience with SLRs in software engineering [34–36] and 

assessed the selected studies accordingly (See Table 3). We evaluated the studies with the following scores: 0 

(does not fulfill the criteria), 0.5 (partially fulfills the criteria) and 1 (fulfills the criteria). A threshold of at least 

60% of the maximum score (>3 out of 5) was chosen, to ensure the quality and relevance of the selected studies. 

Each of the authors computed the quality score of the studies independently. In order to ensure the consistency 

of the study quality assessment, we computed the Krippendorff’s alpha (α). The value of this parameter was 

78%, which dictates a similarity in the interpretation of data among co-authors. However, few discrepancies 

were identified, discussed and further resolved through consensus.  

 
Table 3. Quality questions 

 
ID Quality Question  

1 Does the study clearly define the aim? 

2 Is the chosen research method appropriate to the research questions? 

3 Is the research methodology explained in detail ensuring reliability, internal/external validity and 

replicability? 

4 Does the study discuss/identify/address any challenges of (semi-)automated requirements 

traceability by using empirically measured data? 

5 Do the conclusions answer the research question(s)? 
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3.2.3 Data Extraction and Synthesis 
We used the reference manager Zotero to automatically extract data for each study regarding the following 

attributes: title of the study, author(s) name(s), date of publication and source of publication (journal, 

conference, symposium and workshop). The automatic extraction of this data prevents inconsistencies which 

may lead to erroneous analysis and interpretation of findings. Two of the authors of the study extracted data 

independently, by means of an extraction form. The extraction form and the data are available online as archived 

open data [39]. Other attributes of the data extraction form were inserted manually, for instance research 

methods were classified into experiments, surveys and case studies, using the definitions of empirical research 

methods in software engineering [42]. According to Wohlin et al. [42], these research methods are not 

competing, on contrary they can be used together in order to enable more informed decisions in software 

engineering. Therefore, we also investigate combinations of these research methods. In addition, the data 

extraction form contains the quality scores and challenges addressed by the primary studies. The authors 

identified themes regarding the challenges that the studies identify and/or address, independently. These themes 

were compared and discussed among the authors. In the case of conflicting themes, disagreements were resolved 

with the assistance of the third co-author. Finally, the themes were grouped according to their underlying nature 

in five categories: technological, human factors, organizational, communication and collaboration, and 

regulatory challenges.  

Regarding data synthesis, previous literature has proposed the following two approaches: descriptive/narrative 

data synthesis and quantitative data synthesis [43]. We followed the descriptive data synthesis approach by 

identifying themes based on the data extracted from the selected studies. Additionally, we measured the 

frequencies of these themes, in order to outline dimensions for future research. It is noteworthy that these 

frequencies do not indicate the importance of the challenges but provide insights into research gaps.  

 

4 Results 
 
In the following sections we provide an overview of the primary studies and findings related to our research 

question.  

 

4.1 Overview of primary studies 
In this section we present contextual information of the primary studies. In particular, we outline the distribution 

of primary studies based on publication year and research methods used, publication type, and quality scores 

using descriptive representations, such as simple bar chart, multiple bar chart and pie chart.  

Fig. 2 shows the number of primary studies distributed by research method and year of publication. It is easy to 

notice the dominance of experiments throughout the majority of years, for instance 9 out of 16 studies published 

in 2013 used experiments as the main research method. Overall, 29 out of 70 studies (41%) adopted only 

experiments as their research method and 7 out of 70 studies (10%) adopted both surveys and experiments, 

indicating controlled experiments as the most used research method (36 out of 70 studies). This is not 

surprising, as experiments reduce complexity through the control of all variables other than the ones under 

investigation, given their reductionist nature [44]. For instance, in [16] authors aim to investigate the effect of 

contextual information in the precision and recall of the final set of trace links and on the number of links 

generated during a specific time period. To reduce complexity, they controlled confounding factors, such as 

initial precision and recall of trace links. However, controlling such variables may be a limiting factor when it 

comes to the generalizability of their results and their applicability in industry [44]. Therefore, more exploratory 

studies are needed in realistic environments with practitioners as subjects, in order to explore their feelings, 

behaviors and attitudes regarding traceability practices. 

The second observation is related to the number of primary studies distributed over years. Although a clear trend 

cannot be identified, we observe a peak of studies in 2013 (16 studies) and a sharp decrease of the number of 

studies published in 2014. A plausible explanation could be related to the International Workshop on 

Traceability in Emerging Forms of Software Engineering organized in 2013, as part of the International 

Conference on Software Engineering (ICSE). This workshop aims to bring together researchers and 

practitioners in order to explore challenges of recovering and maintaining software traceability. The workshop 

was not organized in 2014, which may explain the low number of studies. In fact, this trend can be also 

observed in the Requirements Engineering conference. In this regard, we observed the tracks of this conference 

in 2013 and 2014 with respect to traceability. Our observation revealed three sections dedicated to traceability in 

2013: automated traceability, traceability in practice (research track) and traceability in practice (industrial 

tracks), and only one section in 2014, named traceability. 
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Figure 2. Distribution of primary studies based on publication year and research methods 

The pie chart in Fig. 3 shows the relative distribution of primary studies based on publication type. Our findings 

reveal that the majority of studies were published in conference proceedings, in total 37 out of 70 (53%). This is 

not surprising given the conference-driven nature of the software engineering field. Moreover, there were 20 

journal studies (29%), 9 workshop studies (13%) and 4 symposium studies (6%). Over 81% of the studies (57 

out of 70) were published in journals or conferences, which ensures the quality of the studies. As expected, 32% 

of conference studies were published in the Requirements Engineering conference and 44% of workshop studies 

in ICSE International Workshop on Traceability in Emerging Forms of Software Engineering. 

 

 
Figure 3. Distribution of primary studies based on publication type 

The bar chart in Fig. 4 depicts the relative frequencies of studies for each of the quality scores. We assigned 

total scores to the selected studies, by summing up scores of the 5 quality questions. The results indicate that the 

selected primary studies scored at least 60% (>=3) of the maximum score (5), which is a reasonable threshold. 

Only 7.14% of the studies scored 3. This low score can be explained by the fact that these studies propose 

solutions to address challenges of (semi-) automated RT which are neither validated in experimental settings, 

nor evaluated in organizational settings. On the other side, only 10 out of 70 studies reached quality scores of 

4.5 and 5. This result can be explained with the fact that most of the studies used experiments as the main 
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research method with students as subjects, which could undermine the validity of the study. Another reason is 

the lack of discussion regarding threats to validity and reliability that was observed in some of the studies, for 

instance [7, 45].  

 

 
Figure 4. Percentage of primary studies for quality score 

 

4.2 Challenges of (semi-)automated requirements traceability 
In this section, we report on the challenges of (semi-)automated RT. We identified 21 challenges and organized 

them into five categories (See Table 4). Due to the relatively large time span 2009-2019, we decided to split it 

into two periods 2009-2014 and 2015-2019. We also calculated the number of studies that identify and/or 

address each of the challenges in order to pinpoint gaps for future research. It is noteworthy that more than one 

challenge can be identified and/or addressed by a specific study. 

 

4.2.1 Technological challenges 
Our findings indicate that the traceability community has paid more attention towards improving the accuracy of 

traceability recovery methods compared to the other technological challenges (see Table 4). In the following 

section, we present the technological challenges identified: 

Low accuracy of traceability recovery methods. The most popular methods to generate traceability links are 

IR methods [13]. These methods have demonstrated low precision (20-50%), based on experiments conducted 

in a variety of domains and artifacts [53]. This occurs because IR-based techniques link pairs of artifacts based 

on their textual similarity, representing only a probability of the relation. We found out a variety of strategies 

that intend to enhance IR-based techniques. One of the main strategies is relevance feedback which consists of 

incorporating human judgement to modify initial representations of queries. Shin and Cleland-Huang [57] 

enable the analyst to directly manipulate individual trace queries by inserting or filtering out terms. Building on 

this approach, Dietrich et al. [53] propose Trace Query Modification (TQM) to expand benefits of user 

judgment across multiple queries. TQM uses a set of initial and modified queries to learn transformation rules 

which are then applied to future trace queries. Panichella et al. [71] introduce the concept of adaptive relevance 

feedback which consists of considering information about the software artifacts and already classified trace links 

before applying relevance feedback. While this approach performs relevance feedback for a subset of the links, 

Wang et al. [68] suggest performing relevance feedback for a subset of terms within each trace link.  

Furthermore, it has been reported that IR-based techniques are not able to relate terms with similar meaning e.g. 

“error” and “failure” [54]. In such a case, the use of a dynamic thesaurus was proposed to deal with synonyms 

[54]. Another problem that we identified is polysemy, which refers to the same term appearing in different 

requirements with different meanings. For instance, the term “task” can mean “workflow task” or “development 

task”. To address the polysemy problem, Wang et al. [62] proposed training an artificial neural network to 

determine whether a term has the same meaning in different requirements. Other enhancing strategies consist of 

a combination of regular expression, key phrases and clustering [60], smoothing filter to filter out recurring 
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terms that bring irrelevant information [58], query expansion by means of web mining [59] and filtering after 

recovering trace links by means of part-of-speech tagging [72].  

 
Table 4. Classification of challenges identified from this SLR 

 

However, these approaches fail to leverage underlying semantic information. In this regard, Li and Cleland-

Huang [56] applied a domain-specific ontology combined with generalized ontology to trace artifacts based on 

their semantics and proved the effectiveness of such a combination. However, building this ontology is time-

consuming and an inappropriate ontology can actually worsen the quality of trace links by missing relevant 

relationships or retrieving unrelated artifacts. In this regard, Guo et al. [70] used deep learning to automatically 

capture domain knowledge and semantics of artifacts. The proposed approach adopts unsupervised learning 

techniques to learn word embeddings with respect to the domain, and recurrent neural network to learn semantic 

representation of the artifacts. 

Inadequate integration or interoperability among heterogeneous tools. The software development lifecycle 

(SDLC) consists of a variety of tools, that generate many artifacts of different formats and specified in different 

Category Challenges 
Literature #  

Studies 2009-2014 2015-2019 

Technological 

challenges  

46 (66%) 

Low accuracy of traceability recovery 

methods 
[14, 46–60] [61–72] 

28 

(40%) 

Inadequate integration or interoperability 

among heterogeneous tools 
[19, 21, 47, 73–75] [12, 27, 76–78] 

11 

(16%) 

Traceability decay [45, 51, 73, 79] [69, 76, 80, 81] 
8 

(11%) 

Lack of change notification and propagation [82, 83] [27, 69, 76] 
5 

(7%) 

Poor presentation and visualization of trace 

links 
[52, 75, 79, 84] [27, 85] 

6 

(9%) 

Human factors  

18 (26%) 
Lack of trust in humans’ judgement [15, 86–91] [16, 92, 93] 

10 

(14%) 

Lack of system experience - [16] 
1 

(1%) 

Lack of training [15, 88, 90] - 
3 

(4%) 

Invisible benefits [84] [27, 76] 
3 

(4%) 

Provider-user gap [79] [22, 76] 
3 

(4%) 

Perceived as an overhead  [21, 26, 75] [27, 76] 
5 

(7%) 

Organizational 

challenges 

18 (26%) 

Lack of organizational strategies, and 

guidelines for traceability 
[7, 74, 75, 84, 94] [27, 95, 96] 

8 

(11%) 

Undefined roles and responsibilities for 

traceability 
[75] [27, 76] 

3 

(4%) 

Project dimensions related challenges [19, 74] [65, 97] 
4 

(6%) 

Challenges enabled by the software 

development approach 
[98] [23, 97, 99–102] 

7 

(10%) 

Communication 

and 

collaboration 

challenges 

8 (11%) 

Intraorganizational communication challenges - [76] 
1 

(1%) 

Communication challenges in distributed 

software development 
[82] [27, 69, 76] 

4 

(6%) 

Interorganizational collaboration challenges [75, 103] [12, 76] 
4 

(6%) 

Regulatory 

challenges 

6 (9%) 

Implicit traceability requirements in 

regulations 
[7] - 

1 

(1%) 

Granularity in requirements for traceability [7] - 
1 

(1%) 

Legal and intellectual property constraints [75, 103] [12, 27, 76] 
5 

(7%) 
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languages. Maro et al. [12] conducted 24 interviews with software development stakeholders and revealed that 

14 out of 24 interviewees attributed the difficulty in implementing traceability maintenance to the heterogeneous 

nature of the tools. Likewise, in a later tertiary study Maro et al. [27] considered tool integration as technically 

challenging. 

Previous literature has identified three choices regarding traceability among heterogenous tools [12]. The first 

and most trivial solution is a holistic tool platform in which everything-including traceability, is fully integrated 

in the same tool. This solution ensures consistency because the stakeholder who wants to make a change has to 

first delete or update affected trace links. However, this holistic solution might work in small companies, but it 

is infeasible in the context of interorganizational collaboration (See section 4.2.5). A second solution could be a 

separate traceability management tool. In such a case, elements in the traceability tool need to connect with 

external models, by means of tool adapters. In this regard, Asuncion & Taylor [47] explored the integration of 

tools into an open hypermedia system by using tool-specific adapters that enable an effective means for 

traceability across heterogeneous tools boundaries. Finally, a hybrid solution has been reported which consists 

of combining requirements management and traceability management in the same tool. In such a case, there is a 

need to import models into the traceability management tool. These models can still be changed externally, 

amplifying in this way the inconsistency problem. Therefore, previous research recommends avoiding the 

hybrid solution [12].  

Traceability decay. If trace links are not updated when changes occur, traceability relations deteriorate, ⸺i.e. 

some trace links get lost, others represent false relations⸺ leading to the so-called traceability decay [73]. This 

phenomenon is particularly frequent in the case of links between requirements and source code, because in most 

of the cases, developers change the code frequently without updating the links [80]. To address the traceability 

decay challenge, Mäder and Gotel [73] proposed TraceMaintainer, a tool that adopts a rule-based approach for 

the (semi-)automated maintenance of trace links. This tool captures change events while developers perform 

software development activities using UML (unified modeling language) diagrams, recognizes the software 

development activity, and consequently maintains impacted trace links. A similar and recent approach that aims 

to automate the maintenance of trace links between requirements and source code is Trace Link Evolver (TLE) 

[80]. TLE is based on a set of heuristics coupled with refactoring detection tools and IR algorithms in order to 

identify pre-defined change cases. However, this approach, in contrast with Mäder and Gotel’s approach [73], 

does not need a monitored environment.  

Lack of change notification and propagation. A change of an artifact causes changes of connected artifacts 

and trace links. In the worst-case scenario, the change of an artifact, e.g., requirements, affects a chain of 

artifacts, e.g., design, source code, test cases; and different departments, e.g., mechatronics and software 

engineering [76]. This indicates the need to notify affected stakeholders in order to update related artifacts and 

trace links. For this purpose, some requirements management tools have a “suspect links” feature, where links 

are propagated to developers’ local workplace in case of a change and then developers have the responsibility to 

decide how to update artifacts and traceability relations [27]. However, it is still the user who resolves the 

change manually and this may lead to inconsistencies.  

The distributed development paradigm exacerbates this challenge, as the communication among distributed 

stakeholders is difficult. To enhance remote teams’ awareness regarding requirements changes, a multi-agent 

approach was proposed in [69]. When a requirement is updated or deleted, the recommender agent uses the 

traceability data to determine the change impact on artifacts and to identify the creators of these artifacts. Then, 

the agent sends a message to creators of affected artifacts. When an element is added, the recommender agent 

identifies interdependencies and the impact of the change. This approach ensures autonomy of agents, as they 

can operate without direct intervention from users. 

Poor presentation and visualization of trace links. Large-scale projects are characterized by a high number of 

artifacts and consequently a high number of trace links. These trace links are represented by means of lists or 

mega tables that hinder the comprehension of traceability data and the detection of inconsistencies by interested 

stakeholders [27, 84]. Recently, Aung et al. [85] proposed hierarchical trace map visualization in order to 

represent relationships among artifacts in an interactive manner. Nodes represent artifacts and are clickable for a 

filtered view, whereas edges represent relationships between artifacts. This trace map view supports analysts in 

system comprehension and change impact analysis. 

  

4.2.2 Human factors 
Due to the aforementioned technological limitations, existing traceability tools yield results that cannot be 

trusted to certify the process, especially in safety-critical systems. Therefore, humans play a valuable role in the 

process by validating candidate links generated by tracing tools. Several researchers investigated the 

performance of human analysts during tracing tasks, while others identified factors that influence such a 

performance and as a result the accuracy of the tracing process. It is noteworthy that some of the tools stop at 
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the generation phase, and only few of them offer the functionality to validate tracing links [16]. In what follows 

we present challenges related to the human facet of the tracing process: the first three challenges are focused on 

humans in the vetting process, while the remaining challenges concern stakeholders interested in creating, 

maintaining, and using traceability. 

Lack of trust in humans’ judgement. Cuddeback et al. [86] investigated the performance of human analysts 

while vetting candidate traceability links, through experiments that involved 26 participants from two 

universities. The results of this study revealed that 50% of participants not only did not improve the accuracy of 

links, but most of them decreased the overall accuracy of the candidate links. In line with the results of this 

study, only a year later, Dekhtyar et al. [87] confirmed that participants failed to recover true traceability links. 

Their multivariate statistical analysis revealed that high accuracy of candidate traceability links results in low 

accuracy of final links, due to the fact that humans tend to add bad links or remove good links [90].  

We identified few studies that focus on how to support humans in the tracing process. Maro et al. [16] explored 

what content and context information could be useful to support human analysts. Their findings suggest that 

analysts need: (i) information from the connected artifacts, e.g., who created the artifact, who modified the 

artifact, location of the artifacts in the system, and other connected artifacts, (ii) information from the 

traceability information model, and (iii) information from the tracing algorithm. Moreover, Wang et al. [93] 

investigated whether the use of user-defined keywords, named tagging, supports effectively the analysts. Their 

results confirmed that tagging significantly improved precision, as analysts can decide to accept plausible links 

by looking for keywords. To further improve analysts’ performance, these tags can be exchanged among 

analysts. 

Lack of system experience. One may expect a positive correlation between the level of experience in software 

development and tracing performance. Surprisingly, studies demonstrated a non-significant correlation between 

experience and performance [87]. Nonetheless, there is evidence that the familiarity or experience with the 

system is more important than software development experience or tracing experience [16]. In this regard, it has 

been suggested that the role of vetting tracing links should be allocated based on system experience, for instance 

developers should vet links between requirements and code.  

Lack of training. It has been reported that analysts spend significant amount of time on the so-called gray links, 

i.e. neither obvious true links, nor obvious false links. This occurs due to the lack of training and direction, in 

particular in the way the final traceability matrix (TM) is to be used [15]. Analysts can be trained to use TM 

characteristics, such as an estimate of TM size, when they select links to be added into the final TM [15]. The 

concept of “educating the user” on how to decide on difficult trace links in an efficient fashion was introduced 

in 2011 by Cuddeback et al. [90]. The authors elaborated this concept in a later study and proposed adding a 

training session with a validation task that needs to be passed by the analyst, in order to proceed to real traces 

[88].  

Invisible benefits. Although traceability is valuable in many aspects of the software development lifecycle (See 

Section 1), it has been reported that stakeholders do not perceive traceability benefits [27, 76, 84]. In order to 

create and maintain quality trace links, interested stakeholders need to be aware of the benefits of traceability 

[76]. Maro et al. [27] outline the importance of providing measurements of the direct benefits of traceability, 

however they state that currently there are no such measurements. They propose quantifying benefits of 

traceability by collecting data on the usefulness of traceability links. These data can be collected by monitoring 

activities affected by traceability and by carrying out surveys with traceability users.  

Provider-user gap. Traceability is perceived as an elusive quality attribute of software development because 

practitioners who create trace links are not the same as practitioners who use these links [22, 76] or depend upon 

them [79], i.e., the so-called provider-user gap. For instance, developers create trace links from requirements to 

source code at different granularity levels but another group of stakeholders will eventually use these links, e.g., 

project managers to track progress. In this regard, Wohlrab et al. [76] suggests balancing the effort and benefit 

for traceability per role.  

Perceived as an overhead. Recent studies reported reluctance of stakeholders to invest in traceability [76], 

because they perceive traceability as an extra task that disrupts their workflow. The perceived overhead and 

invisible benefits demotivate stakeholders to prioritize traceability tasks leading to the creation of wrong or 

missing trace links. Maro et al. [27] attribute this perception to two main factors: organizational and technical. 

The organizational factor is related to the provider-user gap and the technical factor is related to poor 

presentation and visualization of trace links.  

 

4.2.3 Organizational challenges 
Lack of organizational strategies and guidance for traceability. Regan et al. [7] conducted a traceability 

assessment in two medical companies and outlined the lack of detailed guidance to implement traceability as 

one of the main factors that shapes the perception of traceability as complex and difficult. Practitioners need 
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guidance in the decisions for trace paths and traceability usage goals [74], in the decisions about trace 

granularity which can lead to either too coarse-grained or too fine-grained links [75], and in systematically 

assessing trace link quality [95]. Rempel et al. [74] revealed that without explicitly defined strategies, 

practitioners are far away from implementing effective traceability, i.e. traceability that supports the 

development project. The lack of organizational strategies, and guidelines for traceability leads to traceability 

approaches coming up by individual teams in a bottom-up fashion. The creation of links in an ad-hoc manner 

can cause inconsistencies and consequently deteriorate traceability link quality. Mäder et al. [84] recommended 

defining traceability strategies in the early stages of the project, while Rempel et al. [74] suggested to define a 

traceability strategy by considering all traceability usage scenarios and goals for each software process task that 

requires traceability. To provide guidance for systematically assessing trace links quality, Rempel and Mäder 

[95] proposed a traceability assessment model (TAM) that identifies for each traceability element an acceptable 

state and unacceptable deviations from the state.  

Undefined roles and responsibilities for traceability. Mäder et al. [75] carried out surveys with 10 

practitioners to explore traceability practices. They reported undefined roles for the creation, maintenance and 

use of traceability in all the cases under study. To date, recent studies revealed that the roles and responsibilities 

for traceability may be defined within an organizational team or discipline, but not on a higher organizational 

level [76]. The interdisciplinary and interorganizational nature of traceability adds complexity to the 

coordination of these roles and responsibilities in practice [76]. In interorganizational software projects, the root 

of this complexity lies in the divergences between organizations in the following dimensions: different 

vocabularies, objectives and development processes [27]. 

Project dimensions related challenges. Challenges of implementing requirements traceability increase with 

project size and project complexity. A large project entails a high number of engineers, a high number of 

artifacts that need to linked, and more communication overhead [97]. A complex project consists of a variety of 

components and interconnections which are difficult to understand, manage or change. The variations of 

traceability information in terms of format and content complicate the representation of trace links and the 

understanding of these links by users [65]. Furthermore, Rempel et al. [74] identified project type as an 

influencing factor on traceability. They observed that projects in product-oriented companies are characterized 

by a more homogeneous tool landscape, i.e. holistic tool platform or a highly integrated toolchain, than service-

oriented companies. Thereby, projects in product-oriented companies tend to have less volatile trace paths.  

Challenges enabled by software development approach. Espinoza and Garbajosa [98] advocate that existing 

traceability approaches depend significantly on characteristics of traditional software development processes. 

They point out two elements to motivate why conventional traceability approaches cannot be applied to agile 

projects: the lack of formal requirements specification documentation in agile approaches and the differences in 

links semantics. For instance, given the multi-facet nature of user stories tests (act as requirements), links from 

requirements to user story tests do not have the same meaning as links from requirements to acceptance tests in 

traditional methodologies. Therefore, the authors outline the need for customizable traceability models, where 

trace links types can be defined according to project needs. In this regard, they propose a traceability metamodel 

that supports three features: (i) user-definable traceability, (ii) roles, and (iii) linkage rules.  

Furtado and Zisman [102] propose Trace++ approach to support the transition from traditional to agile 

methodologies. This approach tackles four problems of agile projects: (i) absence of metrics to measure rework 

per sprint, (ii) lack of understanding of the scope of the project, (iii) lack of documentation about non-functional 

requirements (NFR), and (iv) absence of management control. Trace++ extends traditional traceability 

relationships, for instance to address the lack of documentation about NFR, they add traceability relations 

between user stories, test scenarios and story acceptance criteria, such as performance and security. 

We identified only one study that addresses traceability in DevOps (Development-Operations) environments 

[99]. DevOps practices foster frequent updates of artifacts with continuous integration, testing and deployment. 

Recently, Rubasinghe et al. [99] proposed the SAT Analyser tool with DevOps extension, to establish 

traceability between software artifacts in the development and operational level. This approach was evaluated in 

a case study by means of statistical and network analysis and achieved an accuracy of 71%. 

 

4.2.4 Communication and collaboration challenges 
Intraorganizational communication challenges. Organizations are composed of separate departments and 

disciplines, that often need to communicate and collaborate, for instance electrical, mechanical and software 

engineers in the automotive domain. However, it has been reported that different disciplines employ different 

traceability practices [76]. Without effective communication, the links created by one discipline might not be 

understood by the rest of the practitioners, leading to inconsistent traceability practices throughout the 

organization.  
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Communication challenges in distributed software development. Software development companies are 

moving towards distributed development teams across multiple remote sites. In this context, communication and 

coordination challenges arise due to language and cultural differences among distributed stakeholders [69]. In 

turn, these challenges affect traceability as distributed teams may employ ad-hoc and inconsistent traceability 

practices. A collaborative traceability tool that enables the maintenance of information in a shared space may 

support communication regarding trace links [76]. 

Interorganizational collaboration challenges. At a larger scope, challenges are observed even across 

organizational borders. Rempel et al. [103] attributed difficulties in implementing traceability across 

organizational boundaries to the following problem areas: different organizational background of clients and 

suppliers lead to different technologies and methodologies used, restricted access to artifacts due to 

organizational boundaries, and conflicting objectives. These authors recommend practitioners to ensure 

availability and reliability of traceability, identify and mitigate conflicting objectives and bridge technological 

gap between suppliers and clients. A more recent viewpoint is provided by Wohlrab et al. [76]. They conducted 

multiple case studies to identify collaboration challenges in traceability management and reported very little 

traceability support to external organizations. These organizations communicate via e-mail, and change, delete 

or insert data manually into their requirements management tools. This may lead to inconsistencies and 

mistakes, as the update of trace links is not done automatically [76]. The authors attributed this challenge to the 

heterogeneity of tools used by different organizations and to the fact that suppliers work with a variety of 

customers, without customizing their traceability practices [76].  

 

4.2.5 Regulatory challenges 
Implicit traceability requirements in regulations. Requirements traceability is vital for the safe and effective 

development of safety-critical systems, therefore it is mandated by domain and country specific standards and 

guidelines [8]. Examples of these standards are ASPICE (Automotive Software Performance Improvement and 

Capability dEtermination) for the automotive industry [27] or GPSV (General Principles of Software 

Validation) for the healthcare industry [7]. However, it has been reported that the references to traceability are 

not explicit in regulations [7]. For instance, the European regulation for medical devices, named Medical Device 

Directive, does not explicitly refer to requirements traceability throughout the software lifecycle. Instead of that, 

it requires the validation of medical software according to the “state of art”, which is open to interpretation.  

Granularity in requirements for traceability. Standards differ in the level of traceability detail they provide 

[7]. It has been reported that there are standards that do not mandate traceability throughout the software 

lifecycle, for instance IEC 62304 does not require traceability through design and implementation stages. On the 

other hand, there are standards such as GPSV that require traceability among the following artifacts: 

requirements-design-code-test, to both the function and module level [7]. The identification of references to 

traceability within each of the standards with different levels of detail may be time consuming and may 

complicate the implementation of effective traceability [7].  

Legal and intellectual property constraints. Often, there is a need to create traceability links between artifacts 

of different organizations, e.g., in the automotive domain, artifacts are exchanged between organizations due to 

OEM (Original Equipment Manufacturer)-supplier relationship [27]. However, in practice traceability across 

organizational boundaries is challenging due to legal and intellectual property constraints [12, 27, 76]. For 

instance, the OEM does not share confidential artifacts that contain intellectual property with suppliers. The 

restricted access to artifacts complicates the creation of traceability links by suppliers [27].  

 

5 Discussion 
 
In this section, we discuss our general observations, propose blockchain for requirements traceability and 

present future research directions. The section concludes with a discussion on the potential threats to validity. 

 

5.1 General observations 
Over years, researchers have identified a variety of challenges of (semi-)automated requirements traceability. To 

provide a holistic view of these challenges, we carried out a systematic literature review. We selected a set of 70 

primary studies and observed that most of these studies were published in conference proceedings. A plausible 

explanation of this could be related to the significant advances of traceability research in the International 

Requirements Engineering conference over years. For instance, Nair et al. [31] identified 70 primary studies 

published in the RE conference within the period 1993-2012. In fact, a closer look to the publication sources of 

our primary studies reveals that 12 out of 37 conference studies (32%) are published in the proceedings of the 
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RE conference. This is in line with Winkler and Pilgrim’s [17] statement that a significant part of traceability 

research has been conducted by the requirements engineering community.  

Furthermore, we observed that over half of the primary studies used experiments (36 out of 70, 51%) and 5 

studies presented solutions without validating them. Consequently, the lack of exploratory approaches, such as 

case studies and surveys, is one of our findings. In fact, given that RT is an interdisciplinary and complex field, 

exploratory approaches can contribute by providing empirical evidence of how traceability practices are 

performed in industry. Likewise, Niu et al. [31] identified case studies and surveys as the least used empirical 

methods in traceability studies and they suggested researchers to explore industrial perspectives and 

experiences. The need for more empirical evidence has been also observed in the wider scope of RE [104].  

We observed the following two main dimensions of traceability research regarding challenges: approaches that 

address (semi-)automated traceability creation and maintenance challenges, and approaches that explore 

challenges attributed to humans in the tracing process. The findings revealed that the most frequent challenge is 

the low accuracy of traceability recovery methods. Likewise, Wang et al. [13] concluded that the majority of the 

selected primary studies focus on improving the trustworthiness degree of trace links. Thus, 40% of our primary 

studies identified and/or addressed this challenge whereas human challenges were identified and/or addressed by 

25% of the studies. These findings indicate that human factors are not receiving enough attention in the 

traceability community. In fact, this is not surprising because human factors in software engineering do not 

receive the attention they deserve [105].  

 

5.2 Blockchain applicability 

This SLR identified 21 challenges of (semi-) automated requirements traceability which were categorized into 

five groups: technological, human factors, organizational, communication and coordination challenges, and 

regulatory challenges (See Table 4). New technologies are called to address these challenges [13]. In this paper, 

we propose the use of blockchain technology for requirements traceability. This proposal is in line with software 

engineering researchers who advocated the cross-fertilization between hyped technologies such as blockchain, 

and software engineering [106, 107].  

Blockchain is a distributed ledger that stores transactions in a chain of blocks [108]. The chain of blocks is 

created due to the fact that each block contains the hash of the previous block ensuring immutability which can 

be defined as the inability to tamper with transactions stored on the blockchain [109]. In order for transactions to 

take place in a decentralized, yet reliable manner, a variety of core technologies are integrated, such as 

cryptographic hashes, distributed consensus mechanisms, and digital signatures that rely on asymmetric 

cryptography [110]. Due to these properties, multiple parties share a single truth via a distributed ledger which is 

verifiable at any time. Therefore, blockchain can facilitate trusted collaboration and coordination in distributed 

software development, software provenance, and software integrity assessment [112]. Another important 

blockchain property is smart contracts which are self-executing scripts stored on the blockchain that enable 

reliable transactions and agreements among different trustless parties [111]. Thus, smart contracts can enable the 

automation of a variety of software engineering activities that usually require human reasoning, such as the 

acceptance phase, payments to software engineers, and compliance adherence [112].  

A recent systematic mapping study carried out to explore the software engineering applications enabled by 

blockchain technology [112] observed a growing trend of blockchain-oriented software engineering studies 

during the last three years. For instance, Yilmaz et al. [113] proposed the use of blockchain technology to ensure 

integrity in large-scale agile software development. The authors considered developers as miners who develop 

code and testers as validators of the code. The incentive mechanism enabled by blockchain technology 

eliminates the need for project leaders to assign tasks to developers, instead of that developers compete for 

creating the best code. Other SE researchers have proposed the use of blockchain as a backbone of the SDLC 

ecosystem [114–116] while Singi et al. [114] presented a blockchain-enabled governance framework to ensure 

the trustworthiness of the software development process. The framework monitors and captures event data and 

assesses their adherence to regulations and best practices by means of smart contracts. Finally, Bose et al. [115] 

introduced a blockchain-enabled framework for reliable software provenance, named Blinker. The framework 

consists of data ingestion tools to extract data from disparate sources, and the transformation of the data in 

compliance to PROV-specifications. Provenance data are validated by means of voting mechanisms or social 

certifications. The former requires all or a set of participants to approve transactions according to voting policies 

and the latter relies on participants rating provenance data based on their perceived benefits. Once consensus is 

achieved, provenance data are appended to the distributed ledger, thereby they cannot be modified or accessed 

by unauthorized users. To provide insights from provenance information, the framework enables provenance 

query services that focus on artifacts, agents and processes. Additionally, to enhance comprehension, the authors 

visualize provenance information through interactive hierarchical graphs. 
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The aforementioned studies provide inspiration and interesting insights into the potential of using blockchain to 

address software engineering issues and trigger new promising directions that are not explored in the previous 

literature on requirement engineering. One of such directions is the use of blockchain for requirements 

traceability in distributed settings. Traceability information such as artifacts and traceability links that are 

created by distributed participants can be stored on the blockchain. Due to the inherent properties of blockchain, 

all authorized stakeholders share a holistic, reliable and trustworthy traceability knowledge base and may verify 

its authenticity at any time. This can address interorganizational collaboration challenges with respect to 

traceability by ensuring the reliability and availability of traceability information [103]. In Section 4.2.4, we 

outline the restricted access to artifacts due to organizational boundaries as one of the factors that complicates 

traceability. We argue that the roots of this restriction lie in the lack of trust between parties involved in the 

development of large-scale software. These trust issues can be mitigated by using blockchain technology.  

Another RT challenge that blockchain can address is the reluctance of practitioners to invest in creating quality 

trace links [76] which is caused by three related factors: the perceived overhead, invisible benefits and provider-

user gap. In order to motivate participants to participate in traceability tasks, an incentive mechanism can be 

enabled by smart contracts. Smart contracts can allocate digitized tokens to participants who create quality trace 

links. Despite the fact that the validation of traceability quality is not trivial and requires manual work [27], this 

approach can potentially enhance traceability quality which in turn may encourage stakeholders to use 

traceability links to support SDLC tasks. However, the advantages of using blockchain for requirements 

traceability remain theoretical and further efforts are required to validate them. 

 

5.3 Future research directions 
Our findings suggest the following research directions that are underexplored in the current scientific literature: 

Distributed traceability. The distributed development paradigm and the need for interorganizational 

collaboration call for distributed traceability management. Creating trace links across organizational boundaries 

is a challenging task since some of the artifacts are inaccessible due to confidentiality constraints. For instance, 

OEMs do not share artifacts containing intellectual property that differentiates them in the market [27]. The 

reduced subset of artifacts that can be accessed by a project partner is not sufficient to achieve complete 

requirements traceability [103]. Therefore, the project partner has to rely on the traceability information 

provided by the other partners. Given that mistrust is as a critical issue in interorganizational projects [117], 

Rempel et al. [103] required practitioners to ensure reliability and availability of traceability across 

organizational boundaries. In particular, this requirement can be aligned with the inherent properties of 

blockchain technology. We perceive blockchain as a promising discipline that can contribute to distributed 

traceability as mentioned before in section 5.2. 

Human factors. We identified limited empirical evidence with respect to human factors in the tracing process. 

In this regard, more studies are needed in two facets. Firstly, to identify what factors influence the performance 

of analysts during the vetting process and what tool support is needed to assist them, e.g., tagging or contextual 

information about artifacts. Secondly, it is important to investigate how to motivate practitioners to invest in 

trace link quality. We perceive gamification as an appealing area that can contribute to enhance motivation and 

engagement of practitioners in traceability tasks.  

Traceability in Agile and continuous software engineering. Traditional RT techniques are infeasible in agile 

and continuous software engineering environments, due to the absence of requirements specification documents, 

continuous integration, testing and delivery. Wang et al. [13] identified only one study that focuses on agile-

oriented traceability. In this SLR, we found six additional studies, probably due to the fact that the scope of our 

study is not limited to RT technologies. However, the popularity that agile and particularly DevOps practices are 

recently gaining, indicates that more lightweight traceability approaches are needed to support agile and DevOps 

practices.  

More exploratory studies. Our findings revealed a low number of exploratory studies that focus on how (semi-

)automated RT is performed in industrial environments, what are the existing challenges and the practical needs 

for traceability. In fact, more empirical evidence could enhance the overall understanding of traceability 

practices, henceforth motivate practitioners to implement (semi-)automated requirements traceability. 

 

5.4 Threats to validity 
Although this SLR was conducted with rigor and a reproducibility package is provided [39] to ensure 

transparency and replicability, few limitations exist. In the following section, we explain the main threats to 

validity. 

Internal validity refers to the degree to which researchers of the study can draw conclusions from causes and 

effects. A typical threat to internal validity is researchers’ biases, for instance the selection of 5 databases. 
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Although, there is some inevitable subjectivity, this study followed with rigor the guidelines for performing 

systematic literature reviews in software engineering [43], in order to minimize as much as possible these 

biases. The guidelines consist of planning and developing a review protocol, developing the research question 

using the PICO strategy, using backward snowballing in addition to the database search, developing adequate 

search strings, inclusion/exclusion criteria, and using a data extraction form that includes quality criteria. 

Moreover, another threat to internal validity could be the maturity of the field. In this regard, given that 

requirements traceability has been studied for over three decades, we believe that the field is enough mature at 

least from the research perspective, thus suitable for a systematic review.  

External validity refers to the extent to which the findings are generalizable to other contexts. It is worth 

mentioning that we did not constrain the selection of studies to a specific domain or tracing tool, thereby the 

majority of challenges we identified are of general nature. Nonetheless, the interpretation and priority of these 

challenges could be different in different types of domains. For instance, humans’ judgement in the vetting 

process is very important in safety-critical systems, whereas in general-purpose systems it does not have the 

same relevance.  

Construct validity refers to the extent to which the study measures the construct adequately. To ensure that the 

selected studies focus on (semi-)automated requirements traceability, we used these terms in the search string. 

Given that the term “traceability” can be used interchangeably with the term “tracing”, we included both these 

terms to retrieve as many relevant studies as possible. Additionally, we conducted two searches: firstly, with the 

term “automated” and “semi-automated” and secondly, with other terms such as “assisted”. These two 

searches retrieved the same set of primary studies. However, we recognize that other terms could be used. To 

minimize this threat, we performed backward snowballing and identified 10 relevant studies. Although this 

study cannot ensure completeness, we believe it includes the most relevant primary studies regarding (semi-

)automated requirements traceability.  

Conclusion validity refers to reliability, i.e. the extent to which results can be relied to lead to correct 

conclusions. To ensure reliability, we developed the review protocol via brainstorming sessions, conducted 

searches in two rounds and cross-checked the results of the search process. Moreover, two of the authors 

assessed the selected studies against quality criteria independently, and the third author assessed the entire 

process. Disagreements were resolved through long discussions and consensus was achieved for the final set of 

primary studies. Regarding the data analysis process, we did not conduct it automatically by means of an 

analysis tool. Manual coding is potentially prone to human errors, however two of the authors performed the 

coding process independently, and their results were assessed by the third author with experience in SLRs in 

software engineering.  

Furthermore, to ensure replicability of our study, we provide our extracted data as an archived package that can 

be accessed online [39]. In this way, our work can be assessed and/or extended by other researchers. It is 

noteworthy that there are interdependencies between the categories presented in this study, for instance change 

notification and propagation with communication/collaboration challenges in distributed environments or poor 

visualization with perceived overhead. However, these interdependencies are outside the scope of this study and 

are intended for future research. The interpretation of the interdependencies could enhance the understanding of 

the challenges. 

 

6 Conclusion 
 

We carried out a systematic literature review to shed light into the challenges of implementing (semi-)automated 

requirements traceability, as reported by recent literature. A total of 4530 studies were retrieved and 70 of these 

studies were selected as relevant to this SLR. The objective of this study is to provide a holistic view of (semi-

)automated RT challenges, in order to encourage further research in this area and to motivate practitioners to 

implement traceability practices. Our findings indicate experiments as the most frequent research method, and a 

lack of exploratory studies, such as surveys and case studies. 

We identified 21 challenges and classified these challenges into the following categories: technological 

challenges, human factors, organizational challenges, communication and collaboration challenges, and 

regulatory challenges. The most frequent challenges identified and/or addressed were technological challenges, 

in particular the low accuracy of traceability recovery methods. Based on the findings, we also outlined 

promising dimensions that deserve further research. Blockchain technology was proposed as a suitable technical 

solution to address distributed traceability. Furthermore, we identified the need to address the human facet of the 

tracing process in two directions: by exploring how to support human analysts during the vetting process, and 

how to motivate stakeholders to assign high priority to traceability tasks. Finally, further research effort should 
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be devoted to the exploration of traceability challenges in organizational settings. More empirical evidence may 

boost practitioners to adopt traceability practices. 

Our future work consists of a more detailed analysis of the challenges by investigating the interdependencies 

among the categories. Further, we plan to conduct case studies in order to validate our findings in organizational 

settings. The findings of this study are part of an ongoing research effort that aims to develop a blockchain-

oriented framework for requirements traceability in interorganizational software projects [118]. 
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