
A Blockchain-enabled Framework for Requirements

Traceability

Selina Demi 1[0000-0001-5988-4697], Mary Sánchez-Gordón 1[0000-0002-5102-1122], Ricardo

Colomo-Palacios 1[0000-0002-1555-9726]

1 Østfold University College, Halden, Norway

{selina.demi,mary.sanchez-gordon,ricardo.colomo-palacios}@hiof.no

Abstract. Requirements traceability has been broadly recognized by research-

ers as an important quality of any software development process. However,

among stakeholders, requirements traceability is often perceived as an extra

task that disrupts their workflow. This perceived overhead demotivates stake-

holders to participate in the creation, maintenance and use of traceability links.

The challenges of implementing requirements traceability are amplified when

complex and large-scale software systems are developed by cross-

organizational and distributed teams. Different organizational backgrounds,

conflicting objectives, and organizational boundaries lead to trust issues that

complicate the implementation of traceability in such settings. In this paper, the

authors propose a blockchain-enabled framework for requirements traceability.

This framework aims to: (i) enable a holistic and reliable view of artifacts and

traceability links, (ii) provide an incentive mechanism for creators of traceabil-

ity links, (iii) ensure the authenticity and quality of traceability links by means

of voting mechanisms, (iv) facilitate comprehension from traceability infor-

mation through query services, and (v) enable interactive graphical visualiza-

tion of traceability links.

Keywords: Requirements traceability, Blockchain technology, Smart contracts,

Distributed software development

1 Introduction

Requirements traceability refers to “the ability to follow the life of a requirement in

both a forward and backward direction” [1]. The need to maintain bidirectional trace-

ability of requirements for quality purposes has been formulated by software process

improvement models, such as CMMI, ISO/IEC 15504 (SPICE) [2] and more recently

ISO/IEC 33000. Requirements traceability contributes to the development of high-

quality software, as it supports many activities of the software development lifecycle,

for instance, software maintenance [3], project management [4], change management

and impact analysis [5]. However, in practice, traceability is perceived as an extra

task that practitioners need to perform or as an activity that disrupts their workflow

[6]. This perceived overhead can be explained by the provider-user gap, meaning that

creators of trace links are often not the ones who use them [6, 7]. For instance, devel-

opers create links between implementation tasks and source code commits which are

actually used by project managers to track project’s progress. Thereby, developers

become demotivated and set a low priority to traceability tasks, which may lead to

incorrect or missing links. Maro et al. [6] proposed the incorporation of gamification

elements into traceability tools to increase the motivation and engagement of devel-

opers in traceability creation and maintenance tasks. Moreover, Wohlrab et al. [7]

carried out 24 interviews to explore the relation between traceability management and

collaboration. The respondents proposed the inclusion of voting features into tracea-

bility tools to enable stakeholders to jointly indicate incorrect links or to agree with

the connected artifacts. This collaborative effort improves the effort/benefit ratio,

which in turn motivates developers to contribute to traceability management.

As the complexity of software increases, the development is carried out by cross-

organizational and distributed teams. This paradigm complicates traceability, particu-

larly when distributed teams need to share artifacts [6]. In such environments, previ-

ous literature proposed the use of a centralized data storage in which all artifacts are

stored and accessed by distributed stakeholders [6]. However, artifacts provided by

distributed teams cannot always be trusted, as they may have malicious intentions [8].

The participation of third-party vendors exacerbates trust issues, due to different or-

ganizational background, conflicting objectives, and organizational boundaries [9].

Different organizations may use different tools, methodologies, and processes that

reside within the organizational boundaries, making it difficult to leverage require-

ments traceability in an efficient manner [9]. Additionally, organizational objectives

of one organization may contradict objectives of the other organizations that are in-

volved in the project. For instance, organizations may create incompatible links in

terms of type or granularity, which leads to unusable trace links [6]. Finally, organiza-

tional boundaries can imply restricted access to some artifacts due to confidentiality

constraints [6, 9] which in turn complicates the creation of complete traceability. To

address these challenges, there is a need for a reliable and shared traceability

knowledge base, in order to keep track of all artifacts and trace links created by dis-

tributed stakeholders throughout the software development lifecycle (SDLC). This

can be achieved by means of blockchain technology.

Blockchain is a distributed ledger that stores transaction records in blocks. Each

block includes the hash of the preceding block to point to the previously validated

block in the chain [10]. This structure of a cryptographically linked list ensures immu-

tability which refers to the inability to tamper with the contents stored on the block-

chain. The main utility of blockchain is that it enables the exchange of data or transac-

tions among untrusted participants in a distributed network, without relying on a cen-

tralized trusted party. Centralized third parties are prone to failures, malfunctions, and

security compromises which may lead to system unavailability [11]. Blockchain-

based systems overcome these risks, as every participant keeps a copy of the ledger

and can verify the legitimacy of the transactions [10]. Since 2015, the potential of

blockchain technology extended greatly due to the introduction of smart contracts

[12]. Smart contracts are self-executing computer programs that run across the block-

chain network and enable trusted transactions and agreements among different parties

[13]. The results of smart contracts execution are verified by the nodes of the network

and stored on the distributed ledger. Smart contracts were originally conceived to

automatically implement the terms of the contract that two parties agreed upon in a

trustless environment [14]. Nowadays, the scope of smart contracts has been largely

extended to perform any conceivable task, similarly to general-purpose software pro-

grams [14]. Smart contracts are intended for a variety of application domains, ranging

from financial, notary, game, wallet to library which comprises general-purpose oper-

ations that can be used by other smart contracts [15].

In this paper, we propose a blockchain-enabled framework for requirements trace-

ability. To the best of our knowledge, this is the first study that uses blockchain to

keep track of artifacts and traceability links in distributed settings. This framework

aims to:

• enable a holistic and reliable view of artifacts and traceability links

• provide an incentive mechanism for creators of traceability links

• ensure the authenticity and quality of traceability links by means of voting mecha-

nisms

• facilitate comprehension from traceability information through query services

• enable interactive graphical visualization of traceability links

The paper is structured as follows: Related work is presented in Section 2. Section

3 describes the proposed framework, and Section 4 concludes the work and presents

future research directions.

2 Related Work

Mader et al. [16] emphasized the importance of a traceability information model in

facilitating traceability creation and maintenance. These authors presented the tracea-

bility information model used by their prototype, namely, traceMaintainer. They con-

ducted experiments with subjects who were provided with the traceability information

model and were required to create trace links between use cases and analysis classes

and trace links between analysis classes and design classes. The subjects reported that

they were satisfied with the guidance provided when creating trace links and that

traceMaintainer prevented them from creating trace links in an inappropriate manner.

The authors advocate the use of traceability information models as they enable differ-

ent analyses, such as validating traces, impact analysis and change propagation, cov-

erage analysis, and relation count analysis.

Cleland-Huang et al. [17] proposed a model-based approach that enables stake-

holders to plan and execute traceability strategies in a graphical modeling environ-

ment. This approach consists of four layers: strategic layer, document management

layer, stored query layer, and executable layer. The strategic layer represents the

traceability graph structure which consists of artifacts and trace paths, using a stand-

ard XML format. The document management layer documents individual set of arti-

facts using a standard XML representation. The stored query layer constructs queries

for primitive traces between adjacent artifacts types, and composite traceability paths

between non-adjacent artifacts in the strategic traceability graph. Finally, the executa-

ble layer provides the user interface to display the pre-defined trace queries and visu-

alize the results. Our study adopts these conceptual layers, albeit it implements them

in a different manner.

Elamin and Osman [5] proposed a user-defined traceability metamodel that uses

XML patterns to define artifacts, trace links, and trace type rules. According to these

authors, the main limitations of traceability approaches lie in the representation and

storage of traceability information. To address these limitations, the authors imple-

mented a graph traceability repository to store artifacts and trace links. The benefits of

the graph repository were demonstrated by applying it to three varying datasets. The

results confirmed that the graph repository outperforms traceability matrices, cross-

reference tables and relational databases in terms of visualizing trace links, represent-

ing multi-dimensional relations and performance. We adopt the concept of rules for

trace links semantics, however we encode these rules into smart contracts and store

artifacts and trace links on a distributed ledger.

None of the aforementioned approaches address requirements traceability in dis-

tributed environments. In this regard, Rempel et al. [9] investigated the need for re-

quirements traceability in inter-organizational software projects. The authors carried

out semi-structured interviews with 17 organizations. The results indicated that on the

one hand requirements traceability has the potential to address inherent issues of in-

ter-organizational software projects, such as compliance, operational excellence and

communication between parties. On the other hand, the different organizational back-

grounds, conflicting objectives, and organizational boundaries were found to compli-

cate the application of requirements traceability. The authors presented the following

guidelines for distributed requirements traceability: ensure the reliability and availa-

bility of traceability information, mitigate conflicting objectives and bridge the tech-

nological gap that exists between clients and suppliers. Despite the valuable insights,

this study does not provide further information on how these guidelines can be im-

plemented.

Furthermore, recent literature has encouraged the cross-fertilization of software

engineering and hyped technologies, such as blockchain technology [18, 19]. In fact,

we have observed an increasing trend of studies that use blockchain to support soft-

ware engineering activities during the last three years [20]. In what follows, we pre-

sent a few of these studies: Yilmaz et al. [21] used blockchain to improve the integrity

of the software development process. The authors proposed an incentive mechanism

where developers compete for developing the best code, instead of being assigned a

specific task by the project manager. This proposal may be valuable to address trust

issues, particularly in large-scale agile development. Bose et al. [22] proposed a

blockchain-oriented framework for trustworthy software provenance in global soft-

ware development. The framework captures provenance data from the variety of tools

used throughout the SDLC and transforms them according to PROV-specifications.

The authenticity of these data is verified by authorized personnel by means of voting

mechanisms. Recently, Singi et al. [23] proposed an incentive framework enabled by

blockchain technology that captures events throughout the entire software develop-

ment lifecycle, analyzes these events for their compliance to incentive policies by

means of smart contracts, and automatically delivers incentives in the form of digit-

ized tokens to software engineers, accordingly. These studies provide valuable in-

sights into the applications of blockchain in the software engineering landscape, how-

ever none of the aforementioned studies is devoted to the use of blockchain for re-

quirements traceability in distributed settings.

3 Proposed Framework

Fig.1. depicts the blockchain-enabled requirements traceability framework. The pro-

posed framework consists of the following components:

Fig. 1. Blockchain-enabled requirements traceability framework

Strategic Layer. A feasibility analysis should be carried out in order to investigate

whether the application of blockchain for requirements traceability is required and

feasible in the given environment. This analysis should take into consideration the

alignment between blockchain features and requirements traceability strategies, alter-

native tools, and technologies for representing and storing traceability links. The latter

has been achieved in the form of traceability matrices, cross-reference tables, rela-

tional databases, and graph traceability repositories [5]. It is also vital that the analysis

explores the benefits of applying blockchain for requirements traceability, along with

challenges, such as implementation costs, technical, regulatory and governance chal-

lenges. The next component of the strategic layer is the traceability information model

(TIM) which provides guidance on what software artifacts to trace and what relations

to establish, and consequently prevents inconsistent results in large projects with

many stakeholders [16]. Determining the traceable artifacts and relations in advance

has been considered a best practice for establishing the traceability environment [24].

Fig.2. depicts a simple traceability information model which consists of three main

elements, as follows [5]:

• Artifacts to define what artifacts should be traced and their properties.

• Trace links to define relations between artifacts based on source artifact ID and

destination artifact ID.

• Trace type rules to define the naming rules for the trace links. For instance, if the

source code is related to the requirement, then the name of the relation is “satisfy”.

These elements can be encoded into smart contracts to enforce the registration of only

those artifacts and trace links that are needed in the project and automatically identify

trace links semantics.

Fig. 2. A simple traceability information model

The last component of the strategic layer is the incentive policy that aims to define

who is eligible to create trace links, how to validate the quality of trace links, e.g., can

be validated by stakeholders using traceability quality metrics such as correctness,

timeliness, accuracy, completeness, consistency and usefulness [25], and how much

incentive goes for the creation of trace links based on their priority.

Blockchain proposal. The blockchain proposal forms the core component of the

framework and consists of:

• Data collection. A variety of tools are used throughout the software development

lifecycle, such as Rational DOORS for requirements management, and Git as a

version control system. These tools generate artifacts that are defined in the tracea-

bility information model. Artifacts generated from these disparate sources can be

captured automatically by means of data ingestion tools/plugins [22] and are

parsed prior to being recorded on the blockchain. Additionally, stakeholders create

trace links manually and invoke the respective smart contract to register these links

on the distributed ledger.

• Storage layer and smart contracts. Smart contracts are created to enable the fol-

lowing functions: register artifacts, e.g., requirements (id, type, name, description,

priority, parent_id), register trace links (source_artifact_id, destination_artifact_id,

trace_type), validate trace links quality and reward trace links creators, according-

ly. On platforms such as Ethereum, the storage costs gas and can lead to network

synchronization issues and the high consumption of disk space on the nodes [26].

To resolve storage limitations, the framework allows to store artifacts’ contents

off-chain in immutable storage, such as IPFS (InterPlanetary File System). Moreo-

ver, the quality of trace links is validated by approvers or verifiers whose selection

depends on voting policies. The approvers provide their consent or rejection which

is logged as a vote on the distributed ledger. The smart contract calculates cumula-

tive votes and accepts or rejects trace links based on the vote score. It is notewor-

thy that the assessment of traceability links quality is challenging because it re-

quires manual checking [6]. Finally, the incentive policies are encoded in the smart

contract that distributes digitized tokens to stakeholders who create quality trace

links.

• Query layer. This layer facilitates comprehension from traceability information

stored on the blockchain. Traceability-related queries must be constructed from

primitive and composite links [17]. Primitive links are links between adjacent arti-

facts types defined in the traceability information model. These queries comprise

simple forms of traces, for instance, return the list of requirements satisfied by

source code or using filters to include only artifacts with a specific attribute value.

Composite trace links are more complicated to implement as they take place be-

tween non-adjacent artifacts, for instance return requirements that trace to source

code which failed its test case [17].

• Presentation layer. This layer is responsible for the visualization of traceability-

related information. Traceability visualization enhances stakeholders’ ability to

comprehend relationships between artifacts. Previous literature reports on difficul-

ties in uncovering insights from traceability information due to the fact that trace

links are represented through lists or mega tables [6, 27]. Other approaches use

two-dimensional graphical formats such as hierarchical leaf node and tree view.

These representations fail to explore relations between different artifacts in an in-

teractive manner which aids in comprehending the overall system [28]. Our

framework suggests hierarchical and interactive visualization of trace links to en-

hance traceability comprehension.

Implementation. In this phase, the blockchain proposal is developed and

implemented. The development of the blockchain proposal requires close cooperation

between blockchain developers and requirements traceability experts or professionals

with skills in both blockchain and requirements traceability. The need for new profes-

sional roles has been also observed in the broader field of blockchain-oriented soft-

ware engineering by Porru et al. [29]. Furthermore, the best fitting blockchain

platform should be selected by mapping the requirements of the desired system and

blockchain features. As the number of blockchain platforms is growing rapidly, the

selection of the appropriate platform becomes challenging. To guide the selection

process, we refer to previous literature that provides a grounded blockchain platform

selection process [30]. The main items to consider comprise network acessibility,

smart contract support, and whether tokens are required or not [30]. For instance,

open-source software with diverse contributors might require public accessibility

whereas the development of complex and large-scale software among a set of known

distributed teams or organizations might require restricted accessibility. Finally, dis-

ruptive technologies such as blockchain are adopted once organizational resistance is

overcome which in turn can be achieved if the organization perceives the value of

such a system [31]. Therefore, it is important to communicate the value of implement-

ing blockchain for requirements traceability in a transparent and clear manner to all

the participants involved in the software development lifecycle.

Assessment. In this phase, the contributions of the blockchain proposal to the soft-

ware development lifecycle are assessed. The proposed framework provides an incen-

tive mechanism to create quality trace links, which motivates stakeholders to partici-

pate in traceability creation and maintenance. Furthermore, the framework enables a

holistic and trustworthy view of artifacts and trace links and presents them in a hierar-

chical and graphical way which encourages the use of traceability to support SDLC

activities. In turn, the increased use of traceability improves the performance of prac-

titioners in solving SDLC tasks, for instance maintenance tasks. The performance can

be measured as the combination of the time to solve the task and correctness of the

solution [3]. Finally, the increased quality and completeness of traceability has a posi-

tive impact on software quality which can be measured in terms of defect rate [32]. A

reduced defect rate implies less need for software maintenance and consequently cost

savings that can be quantified [32]. It is worthy to note that the components of the

proposed framework are designed to be extensible and should be tailored to organiza-

tional requirements. For instance, organizations developing safety-critical systems

may use smart contracts to automatically validate compliance to regulations or stand-

ards that impose traceability requirements, e.g., ISO 26262 and ASPICE in the auto-

motive domain [6].

4 Conclusion

In this paper, we propose a novel blockchain-enabled framework for requirements

traceability. This framework uses blockchain as the backbone of the software devel-

opment lifecycle, to enable an auditable trail of artifacts and trace links created by

multiple distributed stakeholders. Due to its inherent properties, blockchain ensures

visibility regarding what/how/when trace links were created and who created them.

Additionally, the framework can be used to query and represent traceability-related

information to enhance the understanding of the overall system.

Blockchain, as any other technology, does not fit all the use cases in requirements

traceability however this ongoing study is exploring a way of investing, using and

taking the best from blockchain. Although there is large setup and storage overhead

when implementing blockchain for software engineering [33], blockchain can ensure

visibility, transparency, traceability and trustworthiness of artifacts and trace links.

The framework comprises customizable incentive and voting policies to ensure the

trustworthiness of trace links and presents them in an interactive manner to enhance

comprehension. These components can potentially encourage the use of traceability to

support SDLC activities, and in turn improve the performance of practitioners in solv-

ing SDLC tasks and enhance software quality. However, it could also be interesting to

improve the proposed framework by incorporating gamification elements in order to

enhance the motivation and engagement of practitioners in traceability tasks.

Despite the aforementioned potential benefits, the framework also has limitations

that are mainly related to the manual work involved in the creation of smart contracts

and in the validation of quality trace links. Another open issue to be addressed is how

to resolve conflicts that may occur when different participants claim to have created

the same trace links. Furthermore, it is noteworthy that the implementation of block-

chain technology for requirements traceability may be challenging due to the limited

research efforts in this dimension, the nascent stage of blockchain development and

open technical challenges. These limitations have also been identified when imple-

menting blockchain in conventional domains such as supply chain [34]. Although the

proposed framework aims to be easy to used, it requires software practitioners to have

knowledge of both fields: blockchain technologies and requirements traceability.

Further research efforts devoted to the development of prototypes and proofs-of-

concept in this area may encourage software development organizations to implement

blockchain for requirements traceability. Therefore, the blockchain-enabled frame-

work proposed in this study will be validated by means of blockchain and require-

ments traceability experts. Then, a blockchain-enabled requirements traceability pro-

totype will be developed and use cases will be performed to test the concept. In so

doing, some questions arise: What will be the main benefits of an organization to

implement your framework? How easy is the framework for use? What type of

knowledge that engineering needs to be able to use the framework? In a common

project how should use your framework?

References

1. Gotel OCZ, Finkelstein CW (1994) An analysis of the requirements traceability prob-

lem. In: Proceedings of IEEE International Conference on Requirements Engineering. pp 94–

101

2. Gotel O, Cleland-Huang J, Hayes JH, et al (2012) The quest for Ubiquity: A roadmap

for software and systems traceability research. In: 2012 20th IEEE International Requirements

Engineering Conference (RE). pp 71–80

3. Mäder P, Egyed A (2015) Do developers benefit from requirements traceability when

evolving and maintaining a software system? Empir Software Eng 20:413–441.

https://doi.org/10.1007/s10664-014-9314-z

4. Murugappan S, Prabha D (2017) Requirement Traceability for Software Development

Lifecycle. International Journal of Scientific & Engineering Research 8:1–11

5. Elamin R, Osman R (2018) Implementing Traceability Repositories as Graph Data-

bases for Software Quality Improvement. In: 2018 IEEE International Conference on Software

Quality, Reliability and Security (QRS). pp 269–276

6. Maro S, Steghöfer J-P, Staron M (2018) Software traceability in the automotive do-

main: Challenges and solutions. Journal of Systems and Software 141:85–110.

https://doi.org/10.1016/j.jss.2018.03.060

7. Wohlrab R, Knauss E, Steghöfer J-P, et al (2018) Collaborative traceability manage-

ment: a multiple case study from the perspectives of organization, process, and culture. Re-

quirements Eng. https://doi.org/10.1007/s00766-018-0306-1

8. Yau SS, Patel JS (2020) Application of Blockchain for Trusted Coordination in Col-

laborative Software Development. In: 2020 IEEE 44th Annual Computers, Software, and Ap-

plications Conference (COMPSAC). pp 1036–1040

9. Rempel P, Mäder P, Kuschke T, Philippow I (2013) Requirements Traceability across

Organizational Boundaries - A Survey and Taxonomy. In: Doerr J, Opdahl AL (eds) Require-

ments Engineering: Foundation for Software Quality. Springer, Berlin, Heidelberg, pp 125–140

10. Tschorsch F, Scheuermann B (2016) Bitcoin and beyond: A technical survey on de-

centralized digital currencies. IEEE Communications Surveys & Tutorials 18:2084–2123

11. Agbo CC, Mahmoud QH, Eklund JM (2019) Blockchain Technology in Healthcare:

A Systematic Review. Healthcare 7:56. https://doi.org/10.3390/healthcare7020056

12. Marchesi L, Marchesi M, Destefanis G, et al (2020) Design Patterns for Gas Optimi-

zation in Ethereum. In: 2020 IEEE International Workshop on Blockchain Oriented Software

Engineering (IWBOSE). pp 9–15

13. Vacca A, Di Sorbo A, Visaggio CA, Canfora G (2021) A systematic literature review

of blockchain and smart contract development: Techniques, tools, and open challenges. Journal

of Systems and Software 174:110891. https://doi.org/10.1016/j.jss.2020.110891

14. Pinna A, Ibba S, Baralla G, et al (2019) A Massive Analysis of Ethereum Smart Con-

tracts Empirical Study and Code Metrics. IEEE Access 7:78194–78213.

https://doi.org/10.1109/ACCESS.2019.2921936

15. Bartoletti M, Pompianu L (2017) An Empirical Analysis of Smart Contracts: Plat-

forms, Applications, and Design Patterns. In: Brenner M, Rohloff K, Bonneau J, et al (eds)

Financial Cryptography and Data Security. Springer International Publishing, Cham, pp 494–

509

16. Mader P, Gotel O, Philippow I (2009) Getting back to basics: Promoting the use of a

traceability information model in practice. In: 2009 ICSE Workshop on Traceability in Emerg-

ing Forms of Software Engineering. pp 21–25

17. Cleland-Huang J, Hayes JH, Domel JM (2009) Model-based traceability. In: 2009

ICSE Workshop on Traceability in Emerging Forms of Software Engineering. pp 6–10

18. Marchesi M (2018) Why blockchain is important for software developers, and why

software engineering is important for blockchain software (Keynote). In: 2018 International

Workshop on Blockchain Oriented Software Engineering (IWBOSE). pp 1–1

19. Colomo-Palacios R (2020) Cross Fertilization in Software Engineering. In: Yilmaz

M, Niemann J, Clarke P, Messnarz R (eds) Systems, Software and Services Process Improve-

ment. Springer International Publishing, Cham, pp 3–13

20. Demi S, Colomo-Palacios R, Sánchez-Gordón M (2021) Software Engineering Ap-

plications Enabled by Blockchain Technology: A Systematic Mapping Study. Applied Sciences

11:2960. https://doi.org/10.3390/app11072960

21. Yilmaz M, Tasel S, Tuzun E, et al (2019) Applying Blockchain to Improve the Integ-

rity of the Software Development Process. In: Walker A, O’Connor RV, Messnarz R (eds)

Systems, Software and Services Process Improvement. Springer International Publishing,

Cham, pp 260–271

22. Bose RPJC, Phokela KK, Kaulgud V, Podder S (2019) BLINKER: A Blockchain-

Enabled Framework for Software Provenance. In: 2019 26th Asia-Pacific Software Engineering

Conference (APSEC). pp 1–8

23. Singi K, Kaulgud V, Chandra Bose RPJ, et al (2020) Are Software Engineers Incen-

tivized Enough? An Outcome based Incentive Framework using Tokens. In: 2020 IEEE Inter-

national Workshop on Blockchain Oriented Software Engineering (IWBOSE). pp 37–47

24. Cleland-Huang J, Berenbach B, Clark S, et al (2007) Best Practices for Automated

Traceability. Computer 40:27–35. https://doi.org/10.1109/MC.2007.195

25. Gotel O, Cleland-Huang J, Hayes JH, et al (2012) Traceability Fundamentals. In: Cle-

land-Huang J, Gotel O, Zisman A (eds) Software and Systems Traceability. Springer, London,

pp 3–22

26. Singi K, Kaulgud V, Bose RPJC, Podder S (2019) CAG: Compliance Adherence and

Governance in Software Delivery Using Blockchain. In: 2019 IEEE/ACM 2nd International

Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). pp 32–39

27. Mäder P, Jones PL, Zhang Y, Cleland-Huang J (2013) Strategic Traceability for Safe-

ty-Critical Projects. IEEE Software 30:58–66. https://doi.org/10.1109/MS.2013.60

28. Aung TWW, Huo H, Sui Y (2019) Interactive Traceability Links Visualization using

Hierarchical Trace Map. In: 2019 IEEE International Conference on Software Maintenance and

Evolution (ICSME). pp 367–369

29. Porru S, Pinna A, Marchesi M, Tonelli R (2017) Blockchain-Oriented Software Engi-

neering: Challenges and New Directions. In: 2017 IEEE/ACM 39th International Conference

on Software Engineering Companion (ICSE-C). pp 169–171

30. Farshidi S, Jansen S, España S, Verkleij J (2020) Decision support for blockchain

platform selection: Three industry case studies. IEEE Transactions on Engineering Manage-

ment 67:1109–1128

31. Beck R, Müller-Bloch C (2017) Blockchain as radical innovation: a framework for

engaging with distributed ledgers as incumbent organization. In: Proceedings of the 50th Ha-

waii International Conference on System Sciences

32. Rempel P, Mäder P (2016) Preventing defects: The impact of requirements traceabil-

ity completeness on software quality. IEEE Transactions on Software Engineering 43:777–797

33. Yau SS, Patel JS (2020) A Blockchain-based Testing Approach for Collaborative

Software Development. In: 2020 IEEE International Conference on Blockchain (Blockchain).

pp 98–105

34. Chang SE, Chen Y (2020) When Blockchain Meets Supply Chain: A Systematic Lit-

erature Review on Current Development and Potential Applications. IEEE Access 8:62478–

62494. https://doi.org/10.1109/ACCESS.2020.2983601

