

DevOps Practitioners’ Perceptions of the Low-code Trend

Saima Rafi
 Department of Informatics and Systems

 University of Murcia

 Spain

 saeem112@gmail.com

Muhammad Azeem Akbar
 Department of Software Engineering

 LUT University

 Finland

 azeem.akbar@lut.fi

Mary Sánchez-Gordón
 Department of Computer Science

 Øsfold University College

 Halden Norway

 mary.sanchez-gordon@hiof.no

Ricardo Colomo-Palacios
 Department of Computer Science

Øsfold University College

 Halden Norway

 ricardo.colomo-palacios@hiof.no

ABSTRACT

Background: DevOps is currently one of the main trends in

software development. Low-Code is also an emerging tendency

that, combined with DevOps, may offer significant value to

software businesses by improving the process. However, how

DevOps practices and low-code are combined is little known.

Aim: This study aims to understand the practitioner’s perspectives

on low-code trends. Method: Twelve interviews with IT

professionals who deal with low-code in the context of DevOps

were conducted. Then, a grounded theory approach was used to

theme the interview quotes into emergent categories. Results: The

main result of this exploratory study reveals that such an approach

is the most common response to the skill shortages of software

professionals. Conclusion: This study suggests the emergence of

DevOps and low-code could significantly contribute to the

development of quality products with low-cost and time.

CCS CONCEPTS

• Software and its engineering → Software creation and

management

KEYWORDS

DevOps, Low-code, Interviews, Grounded theory, SPI

1 Introduction

Nowadays, in a fast changing environments, DevOps is one of

the most effective approaches to shorter response times to

business needs [1]. In DevOps, the collaboration of development

and operations teams is increasing the flexibility of the software

development process. However, to perform continuous

development, continuous testing, continuous deployment, and

continuous delivery; agility is needed in all phases of a DevOps

lifecycle [2]. In turn, low-code approaches seem, initially, great

tools to extend the gains of agility in software organizations with

faster response and low operational costs [3]. Low-code is seen as

a visual and semi-automated set of tools to construct software [4].

It delivers software products with minimum effort to write code

using a graphical user interface (GUI) and requires the least

possible effort for the installation, deployment, and configuration

of software-based solutions. Low-code solutions could be a

promising step to meet the rapid demands of software

development [5].

The stream of low-code software development has grown due

to the incorporation of low-code solutions to large software

vendors product portfolios [6]. According to a Forrester report [7],

the low-code platform market is expected to be $21 Billon by

2022 while a Gartner report [8] states that around 65% of large

companies will use low-code platforms to some extent by 2024.

Low Code Development Industry is projected to achieve a global

market size of US$ 187 Bn by 2032 [9]. However, there are many

concerns related to the use of low-code tools to build applications

instead of traditional approaches, [5].

Observing that both low-code and DevOps approaches share a

common motive of delivering valuable software products; we

formulate the following research question for this study: What do

practitioners think about the emergence of DevOps and low-code?

The collaboration of automated tool kits to accelerate a manual

process of development and culture change could bridge the gap

between development and operations, to take the business wave to

next level [10]. To explore the usefulness of low-code software

development platforms inside the DevOps paradigm, we have

conducted interviews with twelve IT professionals. Moreover, the

exploratory nature of this study calls for a qualitative research

approach like grounded theory (GT) [11].

The paper is organized as follows. Section 2 presents the

background and related work. Section 3 defines the research

methodology while Section 4 presents the results. Then, Section 5

discusses the results, and Section 6 draws some conclusions.

2 Background and related works

DevOps plays a major role in building a culture in which

development and operations teams work in a collaborative

environment [12]. DevOps is one step forward to agile as it

encourages continuous development and delivery cycles. DevOps

had its origin at Agile Conference in 2008 [13] and currently, it is

a worldwide phenomenon in all kinds of organizations [14].

DevOps has been defined in various contexts by different

researchers. For example, Dyck et al. [15] DevOps is “a cross-

functional collaboration between teams”. According to Erich et al.

[16] “to support development and operation teams the DevOps is

a conceptual framework”. The overall objective of DevOps is to

increase customer satisfaction by providing continuous services

and updates.

The idea of low-code development is not new, however, the

new generation of tools based on a Platform-as-a-Service (PaaS)

model, e.g., (Google) App Maker and (Microsoft) PowerApps, are

reaching leading positions in specific domains such as mobile

applications and database applications [20]. Low-code

development approaches are based on graphical user interfaces

(GUI) comprising a set of templates, wizards, and drag and drop

options that help to build the software product rapidly with

minimal effort of self-coding [17]. A Forrester report [7] defined

low-code as a “platform available to customers for software

development with visual and declarative techniques instead of

hand-code at low cost”.

Van der Burgh [18] gave an initial idea towards the adoption

of low-code development in DevOps (LCDevOps-RSA) by

characterizing low-code as a tool-based approach to design

business software applications and by establishing a readiness

model that shows the relationships between both approaches.

Philippe et al. [19] conducted a study that highlighted the

complexity of code development and elaborate on the importance

of low-code to minimize code development complexity.

Therefore, such a mixed approach could bring a significant benefit

to developing and delivering high-quality software with minimum

time and cost. However, Tisi et al. [20] highlight three main

limitations: (i) Scalability to build large-scale and mission-critical

enterprise applications, (ii) Fragmentation due to each provider

proposing its own low-code development paradigm, which is

linked to a certain programming model, and (iii) Software-only

systems build by potential users with little knowledge of

programming but they could be experts (citizen developers) in

some other domain and expect to use their knowledge in the

application, at the appropriate level of abstraction and using

familiar formalisms.

In this exploratory study, we aim to understand the DevOps

practitioners’ perceptions of the low-code trend by analizing

emerging categories in the light of software process improvement

(SPI). Given that the state-of-the-art knowledge on SPI is

compiled in the SPI manifesto [21], it was used to map the

findings and provide an overview of the topic. The SPI manifesto

measures the social, human, and organizational aspects to improve

the software development process in a productive manner [21].

For example, Khan and Shameem [22] used it to create a

taxonomy of the key factors that could impact the adaptation and

implementation of DevOps practices.

3 Research Methodology

GT is useful to develop a substantive concept for qualitative

research where we have questions like “what is going on in this

area?” [23]. Although this approach is widely used in social

studies, it is also used by software engineering researchers [24],

[25]. GT presents different approaches. Glaser focuses on the

“emergence (of research questions, of codes, of theory)” [26],

while Strauss and Corbin focus on a “systematic approach and

validation of criteria” [23]. In addition, Charmaz [27] emphasizes

the “role of researchers on theory”.

In this study, we used a classic GT i.e., Glaser’s approach,

which keeps researchers’ attention focused on the data and

requires that any concept be grounded in the data [28]. We cannot

conduct a case study or a survey for this study as there is no clear

hypothesis in front [29] and DevOps is a social-technical process

in which a case study that is based on one perspective provides

only limited insights into concepts and human behaviors [30].

3.1 Data collection

We conducted interviews with 12 experts to get their opinions

on merging DevOps with low-code with the aim to accelerate

innovation and continuous software delivery. The process of data

collection should stop when a saturation point is reached, i.e., no

new concept or idea is being obtained [11], but we do not claim a

saturation point in this exploratory study, yet. After finding the

concepts and categories that represent the main concept of the

proposed research objective, the opinions of participants were

collected. This step clarifies the researchers to decide what data

should be collected in the next steps.

To recruit participants, an invitation was sent to twenty-five

IT professionals from three different countries, who are working

with DevOps and low-code. They were interviewed using Skype,

Zoom, and Teams (based on participants’ choice). We used open-

ended questions to clarify the concept overall. We asked their

opinion about merging DevOps with low-code approaches to

accelerate innovation and continuous software delivery, their

suggested strategies, and their opinions on handling risks. The

next set of questions was about business values and roles after

adopting DevOps and low-code in their software development

environment. For example, 1) What are the values of software

process improvement for your business projects? 2) How does

DevOps help you in managing automation and team tasks? The

interview sessions lasted around 40 minutes and they were

recorded and converted to transcripts for later analysis.

3.2 Data analysis

Data analysis is based on “data coding” which is an important

step of GT [11]. It consists of two processes: substantive, and

theoretical coding. Glaser [26] defines them as “Substantive codes

are the emergent categories and properties that conceptually

describe the phenomenon under study, whereas the theoretical

codes are the emergent abstractions that model the integration of

substantive codes as an interrelated set of hypotheses for resolving

the main concern”. The steps, how GT was employed to code the

collected data is available on link https://tinyurl.com/28sp2hne.

A mapping of categories and codes with SPI manifesto was

also conducted to describe the impact of integrating DevOps and

low-code development in terms of (i) people: to analyze how the

integration of DevOps and low-code affects the daily activities of

stakeholders such as end-users, developers, and IT team members;

(ii) business: to measure benefits of using low-code and DevOps

to make businesses successful; and (iii) change: to manage

organizational change and focus on understanding the concept of

improvement in the software development process in the current

situation, i.e., economic crisis and social impact on businesses due

to COVID-19.

4 Results

In this section, the participants’ demographics; and the

opinions of practitioners concerning the combination of DevOps

and low-code are discussed.

4.1 Demographics

https://tinyurl.com/28sp2hne

Table 1 shows the demographic information. The first column

“Id” shows an identifier to anonymize each participant.

Participants reported various roles: IT manager (ITm), Project

manager (PM), System analyst (SA), Operational manager (OPm),

and Developer (Dev). They also reported more than four years of

experience (Exp) and most of them came from Spain (5), followed

by Finland (4), and China (3).

I

d

R

ole

E

xp.

Doma

in

Tools Count

ry

1 I

Tm

5 Telec

om

Github, App maker Finlan

d

2 D

ev

>

4

Telec

om

Github, App maker Spain

3 P

M

+

7

Softw

are

Puppet, App maker Spain

4 O

Pm

5 Softw

are

Puppet, App maker China

5 P

M

1

0

Softw

are

Chief, App maker,

Appian

Finlan

d

6 O

Pm

>

5

Softw

are

Puppet, PowerApps China

7 S

A

+

6

Banki

ng

Jenkins Finlan

d

8 S

A

7 Banki

ng

Jenkins, Gradle China

9 S

A

5 Softw

are

Chief, Puppet,

PowerApps

Spain

1

0

I

Tm

4 Softw

are

Puppet, PowerApps Spain

1

1

D

ev

+

6

Telec

om

Jenkins, TestOps Finlan

d

1

2

P

M

+

10

Telec

om

Jenkins Spain

Table 1: Demographic Information

4.2 SPI overview of low-code emergence in DevOps

The results of this study are explained by illustrating the

emerged categories and codes in the light of SPI manifesto. SPI

manifesto could be used with the intent to improve software

development towards increased quality and productivity levels in

a formal way [22]. The values of the SPI manifesto are people,

change, and business [21].

Id Categories/ sub-categories/ codes # Participants

P People 31

P1 Reduce skill shortages of

professionals

24

P1

.1

Reduce continuous development and

delivery

2 PM3, SA9

P1

.2

No long-handwritten codes 4 PM4,

OPm6, SA7,

Dev11

P1

.3

Reduce work of developers/ save

energy of developers

5 ITm10,

Dev2, OPm4,

PM3, SA8

P1

.4

Effective for citizen developers/non-

professionals

3 SA8,

Dev11, PM12

P1 User-friendly frameworks 4 SA7, SA9,

.5 ITm10, PM12

P1

.6

No need for high-quality developers 2 PM3, SA8

P1

.7

On-demand delivery 3 ITm1,

OPm4, Dev11

P1

.8

Can use developer’s opinions in

other tasks instead of coding

1 ITm1

P2 Speed up software development to

meet customer demands

7

P2

.1

Simple code with GUI interface 2 OPm4,

SA7

P2

.2

Easy to modify 1 PM3

P2

.3

No complex process which speeds up

development

1 Dev2

P2

.4

Deliver software products on time 2 OPm6,

SA9

P2

.5

Give priority to customers 1 SA8

B Business 29

B

1

Economic benefits 11

B

1.1

Package of tools available 3 Dev2,

ITm10, SA7

B

1.2

Reduce financial issues/ within

budget

3 OPm4, PM5,

PM12

B

1.3

Rapid development and delivery 4 ITm10,

Dev2, OPm4,

PM12

B

1.4

Reduce IT cost 1 OPm6

B

2

Performance monitoring 8

B

2.1

Help DevOps teams to focus on the

enterprise’s performance/ no need to

worry about code

3 Dev2,

ITm10, SA8

B

2.2

Low-code can transform hours spent

on repetitive tasks by a team, to focus on

innovation

2 ITm1, PM3

B

2.3

Automated dashboard for quality

check

1 PM5

B

2.4

Effective software delivery 1 OPm6

B

2.5

Increase productivity and efficiency 1 OPm4

B

3

Compliance 6

B

3.1

Help in updating and adding new

functionalities

1 Dev11

B

3.2

Must follow government regulations

during application development

2 ITm1, PM12

B

3.3

Reduce manual recheck of iterations 1 SA9

B

3.4

Automated compliance frameworks 1 SA9

B

3.5

Improve team autonomy to make

decisions

1 ITm10

B

4

Security and governance 4

B Reduce the use of unauthorized tools 1 PM3

4.1

B

4.2

Use of monitoring tools to identify

vulnerabilities

1 Dev2

B

4.3

Reliable product 2 OPm4, SA8

C Change 15

C

1

Infrastructure independence 4

C

1.1

Supporting work-from-home 2 SA8, SA9

C

1.2

Low-code platforms help DevOps

needs of streamlined configuration and

management tools

1 Dev11

C

1.3

Building collaboration culture within

teams

1 ITm1

C

2

Resilience and easy migration 6

C

2.1

Bring resilience to an organization 2 PM5, PM12

C

2.2

Manage automation environment 1 SA7

C

2.3

Speed up response time 3 PM5, Dev2,

ITm10

C

3

Consistency within an organization 5

C

3.1

Low-code tools can integrate easily

with automated platforms

1 PM5

C

3.2

Reduce complexity issues 1 Dev2

C

3.3

Do not affect the organization's

workflow

1 OPm4

C

3.4

Effective management of

project/application

2 SA8, PM12

#: number of times mentioned; Participant: role+Id from Table

1 (e.g., ITm1, PM3)

Table 2: Codebook

Table 2 shows the final version of the codebook. It also shows

the mapping of all the emergence categories, subcategories, and

codes with the SPI manifesto. The first two columns are self-

explained. The third column “#” shows the number of times that a

code appears in interview data (frequency) while the fourth

column “participants” include the respective list of participants

(role+Id from Table 1, e.g. Pm3). For instance, in the category

“people” (Cp), Cp1.1 “reduce continuous development and

delivery”, was pointed out by two participants (PM3, SA9),

similarly, Cp1.2 “no long handwritten codes” shows that four

participants (PM4, OPm6, SA7, Dev11), mentioned this code

during the interview session. It is noteworthy that the main

category Cp1 “Reduce skill shortages of professionals” is the

most commonly mentioned by the participants (24). Therefore, it

is clear from the findings that low-code approaches combined

with DevOps can help in reducing the need for human resources.

It means the growing talent demands and available pool of

software professionals can be fulfilled by enterprises by adopting

low-code approaches. Thus, use low-code approaches can be used

to develop software products alleviating the pressure to hire

professional coders.

In what follows, we briefly describe each sub-categories.

However, due to limited space, we present only the most

significant quotes related to each sub-categories.

4.2.1 People

a) Reduce skills shortages of professionals. The use of low-

code platforms in DevOps will positively impact an organization

to produce valuable products. This is not limited to one part of

people, roles, or activities. The use of low-code in DevOps

environments will help developers to build and modify software

products without writing complex codes. Low-code platforms

provide user interfaces (UI) and support high-level programming

abstractions, then, developers only must focus on logic and flow.

This will help to reduce the amount of software personnel.

“the current situation is leading DevOps teams to search

for more developers as more enterprises are shifting

their data on cloud. The low-code provides graphical

user interface (GUI) and simple frameworks to

code….the developers just have to cope-up the desired

operations using these platforms without thinking about

code…there is no need of recruiting new professional

developers as we are all facing economic crisis” [Dev2].

b) Speed up software development to meet customer

demands. Low-code promise to build a software application with

simple code that is easy to modify speeds up the complete

development process within an organization and reduces time and

cost.

“… using low-code platforms is not just a story for

citizen developers to help them in building an

application. From my perspective, both professional

developers and citizen developers play an important role

in building a software product that is not complex and

speed up development and deployment tasks to meet

customer needs and use of them in DevOps process will

help to maintain development speed and cost” [OPm6].

4.2.2 Business

a) Economic benefits. Software organizations are facing

problems like economic crises due to the current situation of

COVID-19. These organizations are not interested in recruiting

new developers and operational managers; they want all tasks to

be performed on time by the current team. Similarly, many

software development organizations are transferring their data to

the cloud and are using DevOps as a cultural shift to accelerate the

overall lifecycle. Considering low-code platforms can help

organizations to save cost and time. It also suggests that there is

no need of recruiting new team members as low-code tools will

automate and speed up the entire software development process.

“low-code is an economic friendly package of tools

available in market….more than 200 low-code

platforms are available…as they provide solutions to

people who want to develop software projects….the

DevOps environment needs all tasks to be performed in

a continuous manner for which more team members are

required causing financial issues and sometimes

developers are not available … integrating low-code

tools will help DevOps teams to maintain DevOps

culture with rapid development and delivery of software

product, eliminating the need to hire new developers”

[ITm10].

b) Performance monitoring. In an organization, daily

monitoring and log checks are essential factors to maintain

business operations. In DevOps, these factors act as a backbone to

ensure that complex interdependencies are running smoothly.

Low-code dashboards can monitor all activities and provide an

opportunity for the operations team to focus on innovation.

“automated monitoring tools are required for DevOps

… low-code platforms can transform hours spent on

these repetitive tasks into opportunities for engineering

teams to focus on innovation, while still ensuring the

health and performance of enterprise software

portfolios” [SA8].

c) Compliance. Regulations affect all economic sectors.

Software practitioners must keep track of every regulatory

requirement while updating or adding new functionalities to

software. The integration of low-code tools to perform certain

tasks will help in providing solutions for system improvements,

but it needs certain regulations to fulfill regulatory requirements.

“the continuous deployment is all what customer

demands for … data privacy laws differ across nations

and borders. Imagine having to manually recheck every

iteration of your application deployments for

compliance. Luckily, low-code operations mean having

an automated compliance frameworks” [ITm1].

d) Security and governance. Software development

organizations are always finding solutions to resolve security

issues e.g., cyberattacks, authentication, unauthorized tools, and

other security problems that can slow down the development

process. The integration of low-code tools in DevOps may cause

security and governance issues. Therefore, to configure security

issues we need monitoring tools to identify vulnerabilities for

quick feedback.

“Platforms that use hybrid approach are useful but at the

same time cause security problems … low-code

approach in DevOps is a double-edge sword. They

facilitate the development team but have issues like data

security and governance … providing fast delivery to

customers’ shows that security is not a priority concern

of citizen developers. If you are working for large

organization security and governance even become

more important…we are in early stage to say more

about low-code approaches in DevOps but, using

mature and reliable monitoring tools we can mitigate

this problem” [Dev2]

4.2.3 Change

a) Infrastructure independence. Digital organizations are

widely spreading and adopting cloud environments to mitigate

their needs by allowing employees to either work from home (due

to pandemic situations) or across multiple subunits. Cloud

infrastructures make operational tasks more flexible for software

organizations. In a multi-cloud environment, DevOps needs

configuration and management tools to measure relationships

between resources and keep track of compliance issues. Low-code

can help in this context by providing tools and building

collaboration among teams.

“Enterprises are bypassing single-vendor lock-in to

spread workloads across multiple cloud partners… that

means DevOps needs streamlined configuration and

management tools that can track relationships…for that

use of low-code development tools can build a

relationship that provides observability across the range

of vendors consuming enterprise data” [SA8].

b) Resilience and easy migration. The adoption of DevOps

and low-code can increase an organization’s resilience to

managing an automated development environment. The use of

low-code in DevOps can speed up the overall response time.

“Low-code platforms are great tools to extend the gains

of Agile and DevOps approaches … Companies benefit

from continuous delivery that ultimately fosters the

productive collaboration between the business and IT”

[SA 7].

c) Consistency within an organization. Low-code tools can

integrate easily with automated deployment platforms. DevOps

and low-code can increase the speed of development, and, at the

same time, reduce complexity issues. This combination can bring

a positive impact on software process.

“Having one platform that can provide all this with ‘no’

or ‘low’ code can increase the speed of DevOps teams

… the developers don't have to worry about the

compatibility part…. the low-code platform easily gets

integrated with the organization's workflow. There isn't

any risk of disruption involved and make the teams

confident” [PM12].

5 Discussion

Based on the collected evidence and the relationship of

categories and themes with the SPI manifesto, we have presented

the results of the combination of DevOps and low-code

approaches. The classification of categories with SPI manifesto

i.e., people, business, and change, reveals that there is an

emerging theory about the DevOps paradigm with low-code

approaches that will enhance business value by improving

software processes, and the results of combining them will help in

speeding development and deployment. From the findings, it is

clear that DevOps and low-code share a common motivation. The

discussion about how low-code platforms are useful for DevOps

is as follows:

Bridging the gap between skill shortages and the available

professional pool. Low-code helps novice or aspiring coders to

build code without having to write complex lines of code. Using

low-code approaches, highly skilled professionals can focus on

core project areas and can spend time on other productive project

activities. This means that by merging low-code approaches with

DevOps, an organization can have a part of its workforce focusing

on development which is now relatively faster and easy while the

other part is focusing on other vital aspects e.g., scheduling

meetings with operations team to discuss about performance

structure of an application, improving collaborations.

Expediting application development. Software applications

developed using low-code platforms are easily accessible and are

not very complex [31]. Low-code helps DevOps team to complete

development and deployment processes with a reduced timeline

https://www.outsystems.com/low-code-platforms/

from months to days and hours e.g. Low-Code GUI frameworks

will help in reducing the time of self-coding and developers can

meet the requirements of operations team on time.

Consistency. Low-code platforms can integrate easily with

programming tools that automate application deployment.

Besides, they can assist in some of the vital processes in any

DevOps culture such as version control, build validation, and

quality assurance. Having one platform that can provide all this

with ‘no’ or ‘low’ code can increase the speed of DevOps teams

and, at the same time, reduce the overall complexity. Low-code

platforms easily get integrated with the organization's workflow.

There is not any risk of disruption involved which makes the

teams confident.

Threats to Validity. In this study, a small number of

participants (n=12) threaten external validity. We will recruit

more participants as our study progresses to improve the quality

of the findings and aim for theoretical saturation as performed in

[28].

A GT approach does not claim generalization, but rather

produces a mid-ranged theory applicable to the contexts studied

[11]. Data collected during this study does not represent the whole

DevOps community and is limited to practitioners who accepted

to participate, i.e., convenience sample. We kept the detail of

these participants confidential as per human ethics guidelines

governing this study.

Other threat is that there were two participants working as

project managers who do not use low-code tools very often, so

their perspective is different from those who deal with the low-

code platforms in a daily basis. To mitigate this threat, we will

recruit more participants. Since all the emerged codes, concepts,

and categories (including their related properties and

subcategories) came from the real data which were collected

directly from the context and finalized by all authors to overcome

any bias. The variations and classifications proposed by this study

can be extended to apply more widely to other aspects of software

process improvement in DevOps. We hope future studies can use,

validate, and extend our classification in other aspects of process

improvement.

Some participants are self-reporting their experience but other

participants deal with the adoption of low-code from different

roles. We mitigated this threat by an iterative discussion on a

related topic to interrogate it properly [32]. We also shared with

them, topics to be discussed before the interview session to be

sure about the participant, their organization, and their experience

in the use of DevOps and low-code approaches.

6 Conclusions and Future Work

DevOps is increasingly becoming the de-facto paradigm

approach however, still we rely on the generation of code that can

meet the requirements of continuous integration, continuous

deployment, and continuous testing to bring overall agility to

software process development. To overcome this challenge, our

identified emergent categories describe the concept of merging

DevOps with low-code approaches.

This study presents a set of emerging results and a vision that

could allow an organization to deploy and manage software

products at the same fast rate as development. With low-code, a

DevOps team can incorporate developers with almost all

competence level because low-code provides an opportunity to

tackle programmers’ shortages. The rising demands of software

projects are something to be worried about but, according to

practitioners, the emergence of low-code in DevOps is the right

channel that can help teams efficiently meet the market demands.

We believe that our findings and relationships with respect to

the SPI manifesto lay the foundation for future studies. We will

expand our study to examine various low-code platforms to assess

the best approaches in the context of DevOps. We also plan to

investigate the productivity and quality of a software project that

adopts DevOps combined with low-code.

REFERENCES
[1] J. Díaz, D. López-Fernández, J. Pérez, and Á. González-Prieto, ‘Why are

many businesses instilling a DevOps culture into their organization?’, Empir

Software Eng, vol. 26, no. 2, p. 25, Mar. 2021, doi: 10.1007/s10664-020-

09919-3.

[2] S. Rafi, W. Yu, M. A. Akbar, S. Mahmood, A. Alsanad, and A. Gumaei,

‘Readiness model for DevOps implementation in software organizations’,

Journal of Software: Evolution and Process, vol. 33, no. 4, p. e2323, 2021,

doi: 10.1002/smr.2323.

[3] M. A. Al Alamin, S. Malakar, G. Uddin, S. Afroz, T. B. Haider, and A. Iqbal,

‘An Empirical Study of Developer Discussions on Low-Code Software

Development Challenges’, in 2021 IEEE/ACM 18th International Conference

on Mining Software Repositories (MSR), May 2021, pp. 46–57. doi:

10.1109/MSR52588.2021.00018.

[4] A. Bucaioni, A. Cicchetti, and F. Ciccozzi, ‘Modelling in low-code

development: a multi-vocal systematic review’, Softw Syst Model, Jan. 2022,

doi: 10.1007/s10270-021-00964-0.

[5] H. Henriques, H. Lourenço, V. Amaral, and M. Goulão, ‘Improving the

Developer Experience with a Low-Code Process Modelling Language’, in

Proceedings of the 21th ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems, New York, NY, USA, Oct.

2018, pp. 200–210. doi: 10.1145/3239372.3239387.

[6] A. C. Bock and U. Frank, ‘Low-Code Platform’, Bus Inf Syst Eng, vol. 63, no.

6, pp. 733–740, Dec. 2021, doi: 10.1007/s12599-021-00726-8.

[7] R. Koplowitz and J. Rymer, ‘The Forrester WaveTM: Low-Code Development

Platforms For...’ Accessed: Apr. 28, 2022. [Online]. Available:

https://www.forrester.com/report/The-Forrester-Wave-LowCode-

Development-Platforms-For-ADD-Professionals-Q1-2019/RES144387

[8] P. Vincent, M. Driver, and J. Wong, ‘Low-Code Development Technologies

Evaluation Guide’, 2019. Accessed: Apr. 28, 2022. [Online]. Available:

https://www.gartner.com/en/documents/3902331

[9] FACT.MR, ‘Low Code Development Industry is Projected to Achieve a

Global Market Size of US$ 187 Bn by 2032, Currently US Accounts For the

Largest Market Share in the World’, GlobeNewswire News Room, Mar. 09,

2022. https://www.globenewswire.com/news-

release/2022/03/09/2400432/0/en/Low-Code-Development-Industry-is-

Projected-to-Achieve-a-Global-Market-Size-of-US-187-Bn-by-2032-

Currently-US-Accounts-For-the-Largest-Market-Share-in-the-World.html.

[10] C. Jawale, ‘How low-code can fit into the DevOps culture’.

https://www.opcito.com/blogs/how-low-code-can-fit-into-the-devops-culture

(accessed Apr. 28, 2022).

[11] B. G. Glaser, A. L. Strauss, and E. Strutzel, ‘The discovery of grounded

theory; strategies for qualitative research.’, Nursing research, vol. 17, no. 4, p.

364, 1968.

[12] J. Smeds, K. Nybom, and I. Porres, ‘DevOps: A Definition and Perceived

Adoption Impediments’, in Agile Processes in Software Engineering and

Extreme Programming, Cham, 2015, pp. 166–177. doi: 10.1007/978-3-319-

18612-2_14.

[13] C. Young and H. Terashima, ‘How Did We Adapt Agile Processes to Our

Distributed Development?’, in Agile 2008 Conference, Aug. 2008, pp. 304–

309. doi: 10.1109/Agile.2008.7.

[14] F. M. A. Erich, C. Amrit, and M. Daneva, ‘A qualitative study of DevOps

usage in practice’, Journal of Software: Evolution and Process, vol. 29, no. 6,

p. e1885, 2017, doi: 10.1002/smr.1885.

[15] A. Dyck, R. Penners, and H. Lichter, ‘Towards Definitions for Release

Engineering and DevOps’, in 2015 IEEE/ACM 3rd International Workshop on

Release Engineering, May 2015, pp. 3–3. doi: 10.1109/RELENG.2015.10.

[16] F. Erich, C. Amrit, and M. Daneva, ‘Cooperation between information system

development and operations: a literature review’, in Proceedings of the 8th

ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, New York, NY, USA, Sep. 2014, p. 1. doi:

10.1145/2652524.2652598.

[17] M. Valdes Faura, ‘Low-Code and DevOps: Friends or Foes?’, DevOps.com,

Apr. 08, 2021. https://devops.com/low-code-and-devops-friends-or-foes/

(accessed Apr. 28, 2022).

[18] D. A. van der Burgh, ‘A Readiness self-assessment model for Low-code

development enabled devops’, Eindhoven University of Technology,

Eindhoven, 2019.

[19] J. Philippe, H. Coullon, M. Tisi, and G. Sunyé, ‘Towards transparent

combination of model management execution strategies for low-code

development platforms’, in Proceedings of the 23rd ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems:

Companion Proceedings, New York, NY, USA, 2020, pp. 1–10.

https://doi.org/10.1145/3417990.3420206

[20] M. Tisi et al., ‘Lowcomote: Training the next generation of experts in scalable

low-code engineering platforms’, 2019.

[21] J. Pries-Heje and J. Johansen, ‘SPI Manifesto’. 2010. [Online]. Available:

http://www.madebydelta.com/imported/images/DELTA_Web/documents/Ax/

SPI_Manifesto_A.1.2.2010.pdf

[22] A. A. Khan and M. Shameem, ‘Multicriteria decision-making taxonomy for

DevOps challenging factors using analytical hierarchy process’, Journal of

Software: Evolution and Process, vol. 32, no. 10, p. e2263, 2020, doi:

10.1002/smr.2263.

[23] A. Strauss and J. Corbin, Basics of Qualitative Research: Techniques and

Procedures for Developing Grounded Theory. London: SAGE, 1998.

[24] R. Hoda, ‘Socio-Technical Grounded Theory for Software Engineering’, IEEE

Transactions on Software Engineering, pp. 1–1, 2021, doi:

10.1109/TSE.2021.3106280.

[25] S. Rafi, W. Yu, and M. A. Akbar, ‘Towards a Hypothetical Framework to

Secure DevOps Adoption: Grounded Theory Approach’, in Proceedings of the

Evaluation and Assessment in Software Engineering, New York, NY, USA,

Abril 2020, pp. 457–462. doi: 10.1145/3383219.3383285.

[26] B. G. Glaser, Theoretical sensitivity: advances in the methodology of

grounded theory. Sociology Press, 1978.

[27] K. Charmaz, Constructing Grounded Theory: A Practical Guide through

Qualitative Analysis, 1st edition. London ; Thousand Oaks, Calif: SAGE

Publications Ltd, 2006.

[28] K.J.,Stol, P. Ralph and B. Fitzgerald. Grounded theory in software

engineering research: a critical review and guidelines. In Proceedings of the

38th International conference on software engineering (pp. 120-131) May,

2016.

[29] J. W. Creswell, Research Design: Qualitative, Quantitative and Mixed

Methods Approaches, 4th edition. Thousand Oaks: SAGE Publications, Inc,

2014.

[30] R. K. Yin, ‘Validity and generalization in future case study evaluations’,

Evaluation, vol. 19, no. 3, pp. 321–332, Jul. 2013, doi:

10.1177/1356389013497081.

[31] J. Metrôlho, F. Ribeiro, and R. Araújo, ‘A strategy for facing new

employability trends using a low-code development platform’, presented at

the 14th International Technology, Education and Development Conference,

2020.

[32] N. James and H. Busher, ‘Credibility, authenticity and voice: dilemmas in

online interviewing’, Qualitative Research, vol. 6, no. 3, pp. 403–420, Aug.

2006, doi: 10.1177/1468794106065010.

